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The rationale behind statistical modeling
 

◮ Let X1, . . . ,Xn be n independent copies of X.
 

◮ The goal of statistics is to learn the distribution of X.
 

◮ If X ∈ {0, 1}, easy! It’s Ber(p) and we only have to learn the
 
parameter p of the Bernoulli distribution. 

◮	 Can be more complicated. For example, here is a (partial) 
dataset with number of siblings (including self) that were 
collected from college students a few years back: 2, 3, 2, 4, 1, 
3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 1, 3, 1, 2, 3, . . . 

◮	 We could make no assumption and try to learn the pmf: 

x 1 2 3 4 5 6 ≥ 7 
IP(X = x) p1 p2 p3 p4 p5 p6 

L

i≥7 pi 

That’s 7 parameters to learn. 

◮	 Or we could assume that X ∼ Poiss(λ). That’s 1 parameter 
to learn! 
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Statistical model (1)
 

Formal definition 

Let the observed outcome of a statistical experiment be a sample 
X1, . . . ,Xn of n i.i.d. random variables in some measurable space 
E (usually E ⊆ IR) and denote by IP their common distribution. A 
statistical model associated to that statistical experiment is a pair 

(E, (IPθ)θ∈Θ) , 

where: 

◮ E is sample space; 

◮ (IPθ)θ∈Θ is a family of probability measures on E; 

◮ Θ is any set, called parameter set. 

3/11 



Statistical model (2)
 

◮	 Usually, we will assume that the statistical model is well 
specified, i.e., defined such that IP = IPθ, for some θ ∈ Θ. 

◮	 This particular θ is called the true parameter, and is unknown: 
The aim of the statistical experiment is to estimate θ, or 
check it’s properties when they have a special meaning 
(θ > 2?, θ  = 1/2?, . . . ) 

◮	 For now, we will always assume that Θ ⊆ IRd for some d ≥ 1: 
The model is called parametric. 
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Statistical model (3) 

Examples 

1. For n Bernoulli trials: 
( )

{0, 1}, (Ber(p)) . p∈(0,1)

iid
2. If X1, . . . ,Xn ∼ Exp(λ), for some unknown λ > 0: 

( ) 

IR ∗ .+, (Exp(λ))λ>0 

iid
3. If X1, . . . ,Xn ∼ Poiss(λ), for some unknown λ > 0: 

( )

IN, (Poiss(λ))λ>0 . 

iid
4. If X1, . . . ,Xn ∼ N (µ, σ2), for some unknown µ ∈ IR and 

σ2 > 0: 
( ) 

( ) 

IR, N (µ, σ2) .
(µ,σ2 )∈IR×IR∗ 

+ 
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Identification
 

The parameter θ is called identified iff the map θ ∈ Θ  → IPθ is 
injective, i.e., 

θ ′ θ = ⇒ IPθ = IPθ′ . 

Examples 

1. In all four previous examples, the parameter was identified. 

iid
2. If Xi = 1IYi≥0, where Y1, . . . , Yn ∼ N (µ, σ2), for some 

unknown µ ∈ IR and σ2 > 0, are unobserved: µ and σ2 are 
not identified (but θ = µ/σ is). 
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Parameter estimation (1)
 

Idea: Given an observed sample X1, . . . ,Xn and a statistical 
model (E, (IPθ)θ∈Θ), one wants to estimate the parameter θ. 

Definitions 

◮ Statistic : Any measurable1 function of the sample, e.g., 
X̄n,max Xi, X1 + log(1 + |Xn|), sample variance, etc... 

i 

◮ Estimator of θ: Any statistic whose expression does not 
depend on θ. 

◮ An estimator θ̂n of θ is weakly (resp. strongly) consistent iff 

IP (resp. a.s.)
θ̂n −−−−−−−−−→ θ (w.r.t. IPθ). 

n→∞ 

1Rule of thumb: if you can compute it exactly once given data, it is 

measurable. You may have some issues with things that are implicitly defined 

such as sup or inf but not in this class 7/11 
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Parameter estimation (2)
 

◮ Bias of an estimator θ̂n of θ: 

ˆIE θn − θ. 

◮ Risk (or quadratic risk) of an estimator θ̂n: 

IE |θ̂n − θ|2 . 

Remark: If Θ ⊆ IR, 

”Quadratic risk = bias2 + variance”. 
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Confidence intervals (1)
 

Let (E, (IPθ)θ∈Θ) be a statistical model based on observations 
X1, . . . ,Xn, and assume Θ ⊆ IR. 

Definition 
Let α ∈ (0, 1). 

◮	 Confidence interval (C.I.) of level 1− α for θ: Any random 
(i.e., depending on X1, . . . ,Xn) interval I whose boundaries 
do not depend on θ and such that: 

IPθ [I ∋ θ] ≥ 1− α, ∀θ ∈ Θ. 

◮	 C.I. of asymptotic level 1− α for θ: Any random interval I 
whose boundaries do not depend on θ and such that: 

lim IPθ [I ∋ θ] ≥ 1− α, ∀θ ∈ Θ. 
n→∞ 
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Confidence intervals (2)
 

iid
Example: Let X1, . . . ,Xn ∼ Ber(p), for some unknown 
p ∈ (0, 1). 

◮	 LLN: The sample average X̄n is a strongly consistent 
estimator of p. 

α 
◮	 Let qα/2 be the (1− )-quantile of N (0, 1) and 

2
 

J	 J
 

qα/2 p(1− p) qα/2 p(1− p)
¯I = X̄n − √ ,Xn + √ . 

n	 n

◮	 CLT: lim IPp [I ∋ p] = 1− α, ∀p ∈ (0, 1). 
n→∞ 

◮	 Problem: I depends on p ! 
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Confidence intervals (3) 

Two solutions: 

◮ Replace p(1− p) with 1/4 in I (since p(1− p) ≤ 1/4). 

¯◮ Replace p with Xn in I and use Slutsky’s theorem. 
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