18.650 Statistics for Applications

Chapter 5: Parametric hypothesis testing

Cherry Blossom run (1)

- The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C.
- In 2009 there were 14974 participants
- Average running time was 103.5 minutes.

Were runners faster in 2012?

To answer this question, select n runners from the 2012 race at random and denote by X_1, \ldots, X_n their running time.

Cherry Blossom run (2)

We can see from past data that the running time has Gaussian distribution.

The variance was 373.

Cherry Blossom run (3)

- ▶ We are given i.i.d r.v X_1, \ldots, X_n and we want to know if $X_1 \sim \mathcal{N}(103.5, 373)$
- This is a hypothesis testing problem.
- There are many ways this could be false:
 - **1**. $\mathbb{E}[X_1] \neq 103.5$
 - 2. $var[X_1] \neq 373$
 - 3. X_1 may not even be Gaussian.
- ► We are interested in a very specific question: is E[X₁] < 103.5?</p>

Cherry Blossom run (4)

- We make the following assumptions:
 - 1. $var[X_1] = 373$ (variance is the same between 2009 and 2012) 2. X_1 is Gaussian.
- The only thing that we did not fix is $\mathbb{E}[X_1] = \mu$.
- Now we want to test (only): "Is $\mu = 103.5$ or is $\mu < 103.5$ "?
- ▶ By making modeling assumptions, we have reduced the number of ways the hypothesis $X_1 \sim \mathcal{N}(103.5, 373)$ may be rejected.
- ► The only way it can be rejected is if X₁ ~ N(µ, 373) for some µ < 103.5.</p>
- ► We compare an expected value to a fixed reference number (103.5).

Cherry Blossom run (5)

Simple heuristic:

"If
$$ar{X}_n < 103.5$$
, then $\mu < 103.5$ "

This could go wrong if I randomly pick only fast runners in my sample X_1, \ldots, X_n .

Better heuristic:

"If
$$\bar{X}_n < 103.5 - (\text{something that } \xrightarrow[n \to \infty]{} 0)$$
, then $\mu < 103.5$ "

To make this intuition more precise, we need to take the size of the random fluctuations of \bar{X}_n into account!

Clinical trials (1)

- Pharmaceutical companies use hypothesis testing to test if a new drug is efficient.
- To do so, they administer a drug to a group of patients (test group) and a placebo to another group (control group).
- Assume that the drug is a cough syrup.
- Let μ_{control} denote the expected number of expectorations per hour after a patient has used the placebo.
- Let μ_{drug} denote the expected number of expectorations per hour after a patient has used the syrup.
- We want to know if $\mu_{
 m drug} < \mu_{
 m control}$
- ► We compare two expected values. No reference number.

Clinical trials (2)

- ▶ Let $X_1, \ldots, X_{n_{drug}}$ denote n_{drug} i.i.d r.v. with distribution $Poiss(\mu_{drug})$
- ▶ Let $Y_1, \ldots, Y_{n_{\text{control}}}$ denote n_{control} i.i.d r.v. with distribution $\text{Poiss}(\mu_{\text{control}})$
- We want to test if $\mu_{drug} < \mu_{control}$.

Heuristic:

"If $\bar{X}_{drug} < \bar{X}_{control} -$ (something that $\xrightarrow[n_{drug} \to \infty]{n_{drug} \to \infty} 0$), then conclude that $\mu_{drug} < \mu_{control}$ "

Heuristics (1)

Example 1: A coin is tossed 80 times, and Heads are obtained 54 times. Can we conclude that the coin is significantly unfair ?

•
$$n = 80, X_1, \dots, X_n \stackrel{iid}{\sim} Ber(p);$$

• $\bar{X}_n = 54/80 = .68$

• If it was true that p = .5: By CLT+Slutsky's theorem,

$$\sqrt{n}\frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}} \approx \mathcal{N}(0, 1).$$

$$\blacktriangleright \sqrt{n} \frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}} \approx 3.22$$

Conclusion: It seems quite reasonable to reject the hypothesis p = .5.

Heuristics (2)

Example 2: A coin is tossed 30 times, and Heads are obtained 13 times. Can we conclude that the coin is significantly unfair ?

▶
$$n = 30, X_1, \dots, X_n \stackrel{iid}{\sim} Ber(p);$$

▶ $\overline{X}_n = 13/30 \approx .43$

• If it was true that p = .5: By CLT+Slutsky's theorem,

$$\sqrt{n}\frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}} \approx \mathcal{N}(0, 1).$$

- Our data gives $\sqrt{n} \frac{\bar{X}_n .5}{\sqrt{.5(1 .5)}} \approx -.77$
- The number .77 is a plausible realization of a random variable $Z \sim \mathcal{N}(0, 1)$.
- Conclusion: our data does not suggest that the coin is unfair.

Statistical formulation (1)

- Consider a sample X₁,...,X_n of i.i.d. random variables and a statistical model (E, (𝒫_θ)_{θ∈Θ}).
- Let Θ_0 and Θ_1 be disjoint subsets of Θ .

• Consider the two hypotheses:
$$\begin{cases} H_0: & \theta \in \Theta_0 \\ H_1: & \theta \in \Theta_1 \end{cases}$$

- H_0 is the null hypothesis, H_1 is the alternative hypothesis.
- If we believe that the true θ is either in Θ₀ or in Θ₁, we may want to test H₀ against H₁.
- ▶ We want to decide whether to reject H₀ (look for evidence against H₀ in the data).

Statistical formulation (2)

- ► H₀ and H₁ do not play a symmetric role: the data is is only used to try to disprove H₀
- ► In particular lack of evidence, does not mean that H₀ is true ("innocent until proven guilty")
- A *test* is a statistic $\psi \in \{0,1\}$ such that:

• If
$$\psi = 0$$
, H_0 is not rejected;

• If
$$\psi = 1$$
, H_0 is rejected.

• Coin example: H_0 : p = 1/2 vs. H_1 : p = 1/2.

$$\bullet \ \psi = \mathrm{I\!I}\Big\{\Big|\sqrt{n}\frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}}\Big| > C\Big\}, \text{ for some } C > 0.$$

▶ How to choose the *threshold C* ?

Statistical formulation (3)

• Rejection region of a test ψ :

$$R_{\psi} = \{ x \in E^n : \psi(x) = 1 \}.$$

► Type 1 error of a test ψ (rejecting H₀ when it is actually true):

$$\begin{array}{rcl} \alpha_{\psi} & : & \Theta_0 & \to & \mathrm{I\!R} \\ & \theta & \mapsto & \mathrm{I\!P}_{\theta}[\psi=1]. \end{array}$$

► Type 2 error of a test ψ (not rejecting H₀ although H₁ is actually true):

$$\begin{array}{rccc} \beta_{\psi} & : & \Theta_1 & \to & \mathrm{I\!R} \\ & \theta & \mapsto & \mathrm{I\!P}_{\theta}[\psi=0]. \end{array}$$

• *Power* of a test ψ :

$$\pi_{\psi} = \inf_{\theta \in \Theta_1} \left(1 - \beta_{\psi}(\theta) \right).$$

Statistical formulation (4)

• A test ψ has *level* α if

 $\alpha_{\psi}(\theta) \leq \alpha, \quad \forall \theta \in \Theta_0.$

• A test ψ has asymptotic level α if

$$\lim_{n \to \infty} \alpha_{\psi}(\theta) \le \alpha, \quad \forall \theta \in \Theta_0.$$

In general, a test has the form

$$\psi = \mathbb{I}\{T_n > c\},\$$

for some statistic T_n and threshold $c \in \mathbb{R}$.

• T_n is called the *test statistic*. The rejection region is $R_{\psi} = \{T_n > c\}.$

Example (1)

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Ber}(p)$, for some unknown $p \in (0, 1)$.
- We want to test:

$$H_0: \ p = 1/2$$
 vs. $H_1: \ p = 1/2$

with asymptotic level $\alpha \in (0, 1)$.

• Let
$$T_n = \sqrt{n} \ \frac{\hat{p}_n - 0.5}{\sqrt{.5(1 - .5)}}$$
 , where \hat{p}_n is the MLE.

• If H_0 is true, then by CLT and Slutsky's theorem,

$$\mathbb{P}[T_n > q_{\alpha/2}] \xrightarrow[n \to \infty]{} 0.05$$

• Let $\psi_{\alpha} = \mathbb{1}\{T_n > q_{\alpha/2}\}.$

Example (2)

Coming back to the two previous coin examples: For $\alpha=5\%,$ $q_{\alpha/2}=1.96,$ so:

- In Example 1, H₀ is rejected at the asymptotic level 5% by the test ψ_{5%};
- ▶ In **Example 2**, H_0 is not rejected at the asymptotic level 5% by the test $\psi_{5\%}$.

Question: In **Example 1**, for what level α would ψ_{α} not reject H_0 ? And in **Example 2**, at which level α would ψ_{α} reject H_0 ?

p-value

Definition

The (asymptotic) *p*-value of a test ψ_{α} is the smallest (asymptotic) level α at which ψ_{α} rejects H_0 . It is random, it depends on the sample.

Golden rule

p-value $\leq \alpha \iff H_0$ is rejected by ψ_{α} , at the (asymptotic) level α .

The smaller the p-value, the more confidently one can reject H_0 .

- Example 1: p-value = $\mathbb{P}[|Z| > 3.21] \ll .01.$
- Example 2: p-value = $\mathbb{P}[|Z| > .77] \approx .44$.

Idea: For given hypotheses, among all tests of level/asymptotic level α , is it possible to find one that has maximal power ?

Example: The trivial test $\psi = 0$ that never rejects H_0 has a perfect level ($\alpha = 0$) but poor power ($\pi_{\psi} = 0$).

Neyman-Pearson's theory provides (the most) powerful tests with given level. In 18.650, we only study several cases.

The χ^2 distributions

Definition

For a positive integer d, the χ^2 (pronounced "Kai-squared") distribution with d degrees of freedom is the law of the random variable $Z_1^2 + Z_2^2 + \ldots + Z_d^2$, where $Z_1, \ldots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0, 1)$.

Examples:

• If $Z \sim \mathcal{N}_d(\mathbf{0}, I_d)$, then $\|Z\|_2^2 \sim \chi_d^2$.

► Recall that the sample variance is given by $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X}_n)^2$

• Cochran's theorem implies that for $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, if S_n is the sample variance, then

$$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2.$$

►
$$\chi_2^2 = \text{Exp}(1/2).$$

Student's T distributions

Definition

For a positive integer d, the Student's T distribution with d degrees of freedom (denoted by t_d) is the law of the random variable $\frac{Z}{\sqrt{V/d}}$, where $Z \sim \mathcal{N}(0,1)$, $V \sim \chi_d^2$ and $Z \perp V$ (Z is independent of V).

Example:

• Cochran's theorem implies that for $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, if S_n is the sample variance, then

$$\sqrt{n-1} \ \frac{\bar{X}_n - \mu}{\sqrt{S_n}} \sim t_{n-1}.$$

Wald's test (1)

- Consider an i.i.d. sample X_1, \ldots, X_n with statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$, where $\Theta \subseteq \mathbb{R}^d$ $(d \ge 1)$ and let $\theta_0 \in \Theta$ be fixed and given.
- Consider the following hypotheses:

$$\begin{cases} H_0: \quad \theta = \theta_0 \\ H_1: \quad \theta = \theta_0. \end{cases}$$

- Let $\hat{\theta}^{MLE}$ be the MLE. Assume the MLE technical conditions are satisfied.
- ▶ If *H*⁰ is true, then

$$\sqrt{n} \ I(\hat{\theta}^{MLE})^{1/2} \left(\hat{\theta}_n^{MLE} - \theta_0\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, I_d) \quad \text{ w.r.t. } \mathbb{P}_{\theta_0}.$$

Wald's test (2)

Hence,

$$\underbrace{n \quad \hat{\theta}_n^{MLE} - \theta_0}_{T_n} \stackrel{\top}{\xrightarrow{}} I(\hat{\theta}^{MLE}) \quad \hat{\theta}_n^{MLE} - \theta_0}_{T_n} \xrightarrow{(d)}{\xrightarrow{}} \chi_d^2 \quad \text{w.r.t. } \mathbb{P}_{\theta_0}.$$

• Wald's test with asymptotic level $\alpha \in (0,1)$:

$$\psi = \mathbb{I}\{T_n > q_\alpha\},\$$

where q_{α} is the $(1 - \alpha)$ -quantile of χ^2_d (see tables).

► Remark: Wald's test is also valid if H_1 has the form " $\theta > \theta_0$ " or " $\theta < \theta_0$ " or " $\theta = \theta_1$ "...

Likelihood ratio test (1)

► Consider an i.i.d. sample X_1, \ldots, X_n with statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$, where $\Theta \subseteq \mathbb{R}^d$ $(d \ge 1)$.

Suppose the null hypothesis has the form

$$H_0: (\theta_{r+1}, \dots, \theta_d) = (\theta_{r+1}^{(0)}, \dots, \theta_d^{(0)}),$$

for some fixed and given numbers $\theta_{r+1}^{(0)}, \ldots, \theta_d^{(0)}$.

Let

$$\hat{\theta}_n = \underset{\theta \in \Theta}{\operatorname{argmax}} \ \ell_n(\theta) \quad (\mathsf{MLE})$$

and

$$\hat{ heta}_n^c = \operatorname*{argmax}_{ heta \in \Theta_0} \ell_n(heta)$$
 ("constrained MLE")

Likelihood ratio test (2)

Test statistic:

$$T_n = 2 \quad \ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_n^c)$$

.

Theorem

Assume H_0 is true and the MLE technical conditions are satisfied. Then,

$$T_n \xrightarrow{(d)}{n \to \infty} \chi^2_{d-r}$$
 w.r.t. \mathbb{P}_{θ} .

• Likelihood ratio test with asymptotic level $\alpha \in (0, 1)$:

$$\psi = \mathbb{1}\{T_n > q_\alpha\},\$$

where q_{α} is the $(1 - \alpha)$ -quantile of χ^2_{d-r} (see tables).

Testing implicit hypotheses (1)

- Let X₁,..., X_n be i.i.d. random variables and let θ ∈ ℝ^d be a parameter associated with the distribution of X₁ (e.g. a moment, the parameter of a statistical model, etc...)
- Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be continuously differentiable (with k < d).

Consider the following hypotheses:

$$\begin{cases} H_0: & g(\theta) = 0\\ H_1: & g(\theta) = 0. \end{cases}$$

► E.g. $g(\theta) = (\theta_1, \theta_2)$ (k = 2), or $g(\theta) = \theta_1 - \theta_2$ (k = 1), or...

Testing implicit hypotheses (2)

Suppose an asymptotically normal estimator $\hat{\theta}_n$ is available:

$$\sqrt{n} \quad \hat{\theta}_n - \theta \quad \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, \Sigma(\theta)).$$

Delta method:

$$\sqrt{n} \quad g(\hat{\theta}_n) - g(\theta) \quad \xrightarrow{(d)}{n \to \infty} \mathcal{N}_k(0, \Gamma(\theta)),$$

where $\Gamma(\theta) = \nabla g(\theta)^\top \Sigma(\theta) \nabla g(\theta) \in \mathrm{I\!R}^{k \times k}$.

▶ Assume $\Sigma(\theta)$ is invertible and $\nabla g(\theta)$ has rank k. So, $\Gamma(\theta)$ is invertible and

$$\sqrt{n} \Gamma(\theta)^{-1/2} g(\hat{\theta}_n) - g(\theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k(0, I_k).$$

Testing implicit hypotheses (3)

▶ Then, by Slutsky's theorem, if $\Gamma(\theta)$ is continuous in θ ,

$$\sqrt{n} \Gamma(\hat{\theta}_n)^{-1/2} g(\hat{\theta}_n) - g(\theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k(0, I_k).$$

• Hence, if H_0 is true, i.e., $g(\theta) = 0$,

$$\underbrace{ng(\hat{\theta}_n)^{\top}\Gamma^{-1}(\hat{\theta}_n)g(\hat{\theta}_n)}_{T_n} \xrightarrow[n \to \infty]{(d)} \chi_k^2.$$

• Test with asymptotic level α :

$$\psi = \mathbb{I}\{T_n > q_\alpha\},\$$

where q_{α} is the $(1 - \alpha)$ -quantile of χ_k^2 (see tables).

The multinomial case: χ^2 test (1)

Let $E = \{a_1, \ldots, a_K\}$ be a finite space and $(\mathbb{P}_p)_{p \in \Delta_K}$ be the family of all probability distributions on E:

•
$$\Delta_K = \left\{ \mathbf{p} = (p_1, \dots, p_K) \in (0, 1)^K : \sum_{j=1}^K p_j = 1 \right\}.$$

• For $\mathbf{p} \in \Delta_K$ and $X \sim \mathbb{P}_{\mathbf{p}}$,

$$\mathbb{P}_{\mathbf{p}}[X=a_j]=p_j, \quad j=1,\ldots,K.$$

The multinomial case: χ^2 test (2)

▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathbb{P}_p$, for some unknown $\mathbf{p} \in \Delta_K$, and let $\mathbf{p}^0 \in \Delta_K$ be fixed.

We want to test:

$$H_0$$
: $\mathbf{p} = \mathbf{p}^0$ vs. H_1 : $\mathbf{p} = \mathbf{p}^0$

with asymptotic level $\alpha \in (0, 1)$.

► Example: If p⁰ = (1/K, 1/K, ..., 1/K), we are testing whether P_p is the uniform distribution on E.

The multinomial case: χ^2 test (3)

Likelihood of the model:

$$L_n(X_1,\ldots,X_n,\mathbf{p}) = p_1^{N_1} p_2^{N_2} \ldots p_K^{N_K},$$
 where $N_j = \#\{i=1,\ldots,n:X_i=a_j\}.$

Let p̂ be the MLE:

/!\

$$\hat{\mathbf{p}}_j = \frac{N_j}{n}, \quad j = 1, \dots, K.$$

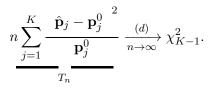
 $\hat{\mathbf{p}}$ maximizes $\log L_n(X_1,\ldots,X_n,\mathbf{p})$ under the constraint

$$\sum_{j=1}^{K} p_j = 1.$$

The multinomial case: χ^2 test (4)

If H₀ is true, then √n(p̂ − p⁰) is asymptotically normal, and the following holds.

Theorem



- ► χ^2 test with asymptotic level α : $\psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha}\}$, where q_{α} is the (1α) -quantile of χ^2_{K-1} .
- ► Asymptotic *p*-value of this test: p value = $\mathbb{IP}[Z > T_n | T_n]$, where $Z \sim \chi^2_{K-1}$ and $Z \perp T_n$.

The Gaussian case: Student's test (1)

► Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$
, for some unknown $\mu \in \mathbb{R}, \sigma^2 > 0$ and let $\mu_0 \in \mathbb{R}$ be fixed, given.

We want to test:

$$H_0$$
: $\mu=\mu_0$ vs. H_1 : $\mu=\mu_0$

with asymptotic level $\alpha \in (0,1)$.

• If
$$\sigma^2$$
 is known: Let $T_n = \sqrt{n} \ \frac{\bar{X}_n - \mu_0}{\sigma}$. Then, $T_n \sim \mathcal{N}(0, 1)$ and

$$\psi_{\alpha} = \mathbb{I}\{|T_n| > q_{\alpha/2}\}$$

is a test with (non asymptotic) level α .

The Gaussian case: Student's test (2)

If σ^2 is unknown:

• Let
$$\widetilde{T_n} = \sqrt{n-1} \ \frac{\overline{X_n} - \mu_0}{\sqrt{S_n}}$$
, where S_n is the sample variance.

Cochran's theorem:

$$\overline{X}_n \perp S_n;$$

$$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2.$$

► Hence, T̃_n ~ t_{n-1}: Student's distribution with n − 1 degrees of freedom.

The Gaussian case: Student's test (3)

• Student's test with (non asymptotic) level $\alpha \in (0,1)$:

$$\psi_{\alpha} = \mathbb{1}\{|\widetilde{T_n}| > q_{\alpha/2}\},\$$

where $q_{\alpha/2}$ is the $(1 - \alpha/2)$ -quantile of t_{n-1} .

• If H_1 is $\mu > \mu_0$, Student's test with level $\alpha \in (0,1)$ is:

$$\psi_{\alpha}' = \mathbb{1}\{\widetilde{T_n} > q_{\alpha}\},\$$

where q_{α} is the $(1 - \alpha)$ -quantile of t_{n-1} .

- Advantage of Student's test:
 - Non asymptotic
 - Can be run on small samples
- Drawback of Student's test: It relies on the assumption that the sample is Gaussian.

Two-sample test: large sample case (1)

► Consider two samples: X₁,..., X_n and Y₁,..., Y_m, of independent random variables such that

$$\mathbb{E}[X_1] = \dots = \mathbb{E}[X_n] = \mu_X$$

, and

$$\mathbb{E}[Y_1] = \dots = \mathbb{E}[Y_m] = \mu_Y$$

 Assume that the variances of are known so assume (without loss of generality) that

$$\operatorname{var}(X_1) = \cdots = \operatorname{var}(X_n) = \operatorname{var}(Y_1) = \cdots = \operatorname{var}(Y_m) = 1$$

We want to test:

$$H_0$$
: $\mu_X = \mu_Y$ vs. H_1 : $\mu_X = \mu_Y$

with asymptotic level $\alpha \in (0, 1)$.

Two-sample test: large sample case (2) From CLT:

$$\sqrt{n}(\bar{X}_n - \mu_X) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, 1)$$

and

$$\sqrt{m}(\bar{Y}_m - \mu_Y) \xrightarrow[m \to \infty]{(d)} \mathcal{N}(0, 1) \quad \Rightarrow \quad \sqrt{n}(\bar{Y}_m - \mu_Y) \xrightarrow[m \to \infty]{(d)} \mathcal{N}(0, \gamma)$$

Moreover, the two samples are independent so

$$\sqrt{n}(\bar{X}_n - \bar{Y}_m) + \sqrt{n}(\mu_X - \mu_Y) \xrightarrow[n \to \infty]{\substack{(d) \\ n \to \infty \\ \frac{m}{n} \to \gamma}} \mathcal{N}(0, 1 + \gamma)$$

36/37

Two-sample T-test

 If the variances are unknown but we know that X_i ~ N(µ_X, σ²_X), Y_i ~ N(µ_Y, σ²_Y).
 ► Then

$$\bar{X}_n - \bar{Y}_m \sim \mathcal{N}\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)$$

► Under *H*₀:

$$\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} \sim \mathcal{N}(0, 1)$$

For unknown variance:

$$\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{S_X^2/n + S_Y^2/m}} \sim t_N$$

where

$$N = \frac{\left(S_X^2/n + S_Y^2/m\right)^2}{\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}}$$

MIT OpenCourseWare http://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.