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Cherry Blossom run (1)
 

◮ The credit union Cherry Blossom Run is a 10 mile race that 
takes place every year in D.C. 

◮ In 2009 there were 14974 participants 

◮ Average running time was 103.5 minutes. 

Were runners faster in 2012? 

To answer this question, select n runners from the 2012 race at 
random and denote by X1, . . . ,Xn their running time. 
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Cherry Blossom run (2)
 

We can see from past data that the running time has Gaussian 
distribution. 

The variance was 373. 
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Cherry Blossom run (3)
 

◮	 We are given i.i.d r.v X1, . . . ,Xn and we want to know if 
X1 ∼ N (103.5, 373) 

◮ This is a hypothesis testing problem. 

◮ There are many ways this could be false: 

1.	 IE[X1]  103.5= 
2.	 var[X1]  373 = 
3. X1 may not even be Gaussian. 

◮ We are interested in a very specific question: is 
IE[X1] < 103.5? 
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Cherry Blossom run (4)
 

◮ We make the following assumptions: 

1. var[X1] = 373 (variance is the same between 2009 and 2012) 
2. X1 is Gaussian. 

◮ The only thing that we did not fix is IE[X1] = µ. 

◮ Now we want to test (only): “Is µ = 103.5 or is µ < 103.5”? 
◮ By making modeling assumptions, we have reduced the 

number of ways the hypothesis X1 ∼ N (103.5, 373) may be 
rejected. 

◮ The only way it can be rejected is if X1 ∼ N (µ, 373) for some 
µ < 103.5. 

◮ We compare an expected value to a fixed reference number 
(103.5). 
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Cherry Blossom run (5)
 

Simple heuristic: 

¯“If Xn < 103.5, then µ < 103.5” 

This could go wrong if I randomly pick only fast runners in my
 
sample X1, . . . ,Xn.
 

Better heuristic:
 

¯“If Xn < 103.5−(something that −−−→ 0), then µ < 103.5” 
n→∞ 

To make this intuition more precise, we need to take the size of the 
¯random fluctuations of Xn into account! 
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Clinical trials (1)
 

◮	 Pharmaceutical companies use hypothesis testing to test if a 
new drug is efficient. 

◮	 To do so, they administer a drug to a group of patients (test 
group) and a placebo to another group (control group). 

◮	 Assume that the drug is a cough syrup. 

◮	 Let µcontrol denote the expected number of expectorations per 
hour after a patient has used the placebo. 

◮	 Let µdrug denote the expected number of expectorations per 
hour after a patient has used the syrup. 

◮	 We want to know if µdrug < µcontrol 
◮	 We compare two expected values. No reference number. 
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Clinical trials (2)
 

◮ Let X1, . . . ,Xndrug denote ndrug i.i.d r.v. with distribution 
Poiss(µdrug) 

◮ Let Y1, . . . , Yncontrol denote ncontrol i.i.d r.v. with distribution 
Poiss(µcontrol) 

◮ We want to test if µdrug < µcontrol. 

Heuristic: 

¯ ¯“If Xdrug < Xcontrol−(something that −−−−−−−→ 0), then 
ndrug→∞ 
ncontrol →∞ 

conclude that µdrug < µcontrol ” 
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Heuristics (1)
 

Example 1: A coin is tossed 80 times, and Heads are obtained 54 
times. Can we conclude that the coin is significantly unfair ? 

iid
◮ n = 80, X1, . . . ,Xn ∼ Ber(p);
 

¯
◮	 Xn = 54/80 = .68 

◮	 If it was true that p = .5: By CLT+Slutsky’s theorem, 

√ X̄n − .5 
n ≈ N (0, 1).J

.5(1− .5) 

√ X̄n − .5 
◮ n ≈ 3.22
 J

.̄5(1 − .5)
 

◮	 Conclusion: It seems quite reasonable to reject the
 
hypothesis p = .5.
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Heuristics (2) 

Example 2: A coin is tossed 30 times, and Heads are obtained 13 
times. Can we conclude that the coin is significantly unfair ? 

iid
◮ n = 30,X1, . . . ,Xn ∼ Ber(p);
 

¯
◮ Xn = 13/30 ≈ .43
 
◮ If it was true that p = .5: By CLT+Slutsky’s theorem,
 

√ X̄n − .5 
n ≈ N (0, 1).J

.5(1− .5) 

¯√ Xn − .5 
◮ Our data gives n ≈ −.77 J

.5(1− .5) 

◮	 The number .77 is a plausible realization of a random variable 
Z ∼ N (0, 1). 

◮	 Conclusion: our data does not suggest that the coin is unfair. 
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Statistical formulation (1)
 

◮	 Consider a sample X1, . . . ,Xn of i.i.d. random variables and a 
statistical model (E, (IPθ)θ∈Θ). 

◮	 Let Θ0 and Θ1 be disjoint subsets of Θ. 

�
H0 : θ ∈ Θ0 

◮	 Consider the two hypotheses: 
H1 : θ ∈ Θ1 

◮	 H0 is the null hypothesis, H1 is the alternative hypothesis. 

◮	 If we believe that the true θ is either in Θ0 or in Θ1, we may 
want to test H0 against H1. 

◮	 We want to decide whether to reject H0 (look for evidence 
against H0 in the data). 
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Statistical formulation (2)
 

◮	 H0 and H1 do not play a symmetric role: the data is is only 
used to try to disprove H0 

◮	 In particular lack of evidence, does not mean that H0 is true 
(“innocent until proven guilty”) 

◮ A	 test is a statistic ψ ∈ {0, 1} such that: 
◮ If ψ = 0, H0 is not rejected; 
◮ If ψ = 1, H0 is rejected. 

◮	 Coin example: H0: p = 1/2 vs. H1: p = 1/2. 

√ X̄n − .5 
◮	 ψ = 1I

{  n 
  > C

}
, for some C > 0.J

.5(1 − .5)

◮ How to choose the threshold C ? 
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Statistical formulation (3) 

◮	 Rejection region of a test ψ: 

Rψ = {x ∈ En : ψ(x) = 1}. 

◮	 Type 1 error of a test ψ (rejecting H0 when it is actually 
true): 

αψ : Θ0 → IR 
θ �→ IPθ[ψ = 1]. 

◮	 Type 2 error of a test ψ (not rejecting H0 although H1 is 
actually true): 

βψ : Θ1 → IR 
θ �→ IPθ[ψ = 0]. 

◮	 Power of a test ψ: 

πψ = inf (1− βψ(θ)) . 
θ∈Θ1 
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Statistical formulation (4)
 

◮ A test ψ has level α if 

αψ(θ) ≤ α, ∀θ ∈ Θ0. 

◮ A test ψ has asymptotic level α if 

lim αψ(θ) ≤ α, ∀θ ∈ Θ0. 
n→∞ 

◮	 In general, a test has the form 

ψ = 1I{Tn > c},  

for some statistic Tn and threshold c ∈ IR.
 

◮	 Tn is called the test statistic. The rejection region is 
Rψ = {Tn > c}. 
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Example (1)
 

iid
◮ Let X1, . . . ,Xn ∼ Ber(p), for some unknown p ∈ (0, 1). 
◮ We want to test: 

H0: p = 1/2 vs. H1: p = 1/2 

with asymptotic level α ∈ (0, 1). 

√ p̂n − 0.5 
◮ Let Tn = n , where p̂n is the MLE. J

.5(1 − .5) 

◮ If H0 is true, then by CLT and Slutsky’s theorem, 

IP[Tn > qα/2] −−−→ 0.05 
n→∞ 

◮ Let ψα = 1I{Tn > qα/2}. 
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Example (2)
 

Coming back to the two previous coin examples: For α = 5%, 
= 1.96, so: qα/2 

◮	 In Example 1, H0 is rejected at the asymptotic level 5% by 
the test ψ5%; 

◮	 In Example 2, H0 is not rejected at the asymptotic level 5% 
by the test ψ5%. 

Question: In Example 1, for what level α would ψα not reject H0 

? And in Example 2, at which level α would ψα reject H0 ? 
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p-value
 

Definition 

The (asymptotic) p-value of a test ψα is the smallest (asymptotic) 
level α at which ψα rejects H0. It is random, it depends on the 
sample. 

Golden rule 

p-value ≤ α ⇔ H0 is rejected by ψα, at the (asymptotic) level α. 

The smaller the p-value, the more confidently one can reject 

H0. 

◮ Example 1: p-value = IP[|Z| > 3.21] ≪ .01.
 
◮ Example 2: p-value = IP[|Z| > .77] ≈ .44.
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Neyman-Pearson’s paradigm
 

Idea: For given hypotheses, among all tests of level/asymptotic 
level α, is it possible to find one that has maximal power ? 

Example: The trivial test ψ = 0 that never rejects H0 has a 
perfect level (α = 0) but poor power (πψ = 0). 

Neyman-Pearson’s theory provides (the most) powerful tests 
with given level. In 18.650, we only study several cases. 
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The χ 2 distributions 
Definition 
For a positive integer d, the χ2 (pronounced “Kai-squared”) 
distribution with d degrees of freedom is the law of the random 

iid
variable Z1

2 + Z2 . . . + Z2, where Z1, . . . , Zd ∼ N (0, 1).2 + d 

Examples: 

◮ If Z ∼ Nd(0, Id), then IZI22 ∼ χ2 
d. 

◮ Recall that the sample variance is given by 
n n 

Sn =
1 n

(Xi − X̄n)
2 =

1 n
Xi 

2 − (X̄n)
2
 

n n 
i=1 i=1 

iid
◮ Cochran’s theorem implies that for X1, . . . ,Xn ∼ N (µ, σ2), if 
Sn is the sample variance, then 

nSn ∼ χ2 
n−1. σ2
 

◮ χ2
2 = Exp(1/2).
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Student’s T distributions 

Definition 
For a positive integer d, the Student’s T distribution with d 
degrees of freedom (denoted by td) is the law of the random 

variable 
Z 

, where Z ∼ N (0, 1), V ∼ χ2 and Z ⊥⊥ V (Z isdJ
V/d  

independent of V ).
 

Example: 

iid
◮	 Cochran’s theorem implies that for X1, . . . ,Xn ∼ N (µ, σ2), if 
Sn is the sample variance, then 

√ X̄n − µ 
n − 1 √ ∼ tn−1. 

Sn 
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Wald’s test (1)
 

◮	 Consider an i.i.d. sample X1, . . . ,Xn with statistical model 
(E, (IPθ)θ∈Θ), where Θ ⊆ IRd (d ≥ 1) and let θ0 ∈ Θ be fixed 
and given. 

◮	 Consider the following hypotheses: 

�
H0 : θ = θ0 

H1 : θ = θ0. 

θMLE 
◮	 Let ˆ be the MLE. Assume the MLE technical conditions 

are satisfied. 

◮	 If H0 is true, then 

√ � 
(d)

n I(θ̂MLE)1/2 
�
θ̂MLE − θ0 −−−→ Nd (0, Id) w.r.t. IPθ0 .n n→∞ 
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� � � �

Wald’s test (2)
 

◮	 Hence, 

⊤ 

θ̂MLE θMLE) θ̂MLE (d)
n − θ0 I(ˆ − θ0 −−−→ χ2 w.r.t. IPθ0 .n	 n d n→∞
 � 

T
�� 
n 

�
 

◮ Wald’s test with asymptotic level α ∈ (0, 1): 

ψ = 1I{Tn > qα}, 

where qα is the (1− α)-quantile of χ2 (see tables). d 

◮	 Remark: Wald’s test is also valid if H1 has the form “θ > θ0 ” 
or “θ < θ0 ” or “θ = θ1”... 
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Likelihood ratio test (1)
 

◮	 Consider an i.i.d. sample X1, . . . ,Xn with statistical model 
(E, (IPθ)θ∈Θ), where Θ ⊆ IRd (d ≥ 1). 

◮	 Suppose the null hypothesis has the form 

(0) (0) 
H0 : (θr+1, . . . , θd) = (θr+1, . . . , θd ), 

(0) (0) 
for some fixed and given numbers θr+1, . . . , θd . 

◮ Let 
θ̂n = argmax ℓn(θ) (MLE) 

θ∈Θ 

and 
θ̂c = argmax ℓn(θ) (“constrained MLE”) n 

θ∈Θ0 
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Likelihood ratio test (2)
 

◮ Test statistic: 

Tn = 2 ℓn(θ̂n)− ℓn(θ̂
c ) .n

◮ Theorem 
Assume H0 is true and the MLE technical conditions are satisfied. 
Then, 

(d)
Tn −−−→ χd2 −r w.r.t. IPθ. 

n→∞ 

◮ Likelihood ratio test with asymptotic level α ∈ (0, 1): 

ψ = 1I{Tn > qα}, 

where qα is the (1− α)-quantile of χ2 (see tables). d−r 
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Testing implicit hypotheses (1)
 

◮	 Let X1, . . . ,Xn be i.i.d. random variables and let θ ∈ IRd be 
a parameter associated with the distribution of X1 (e.g. a 
moment, the parameter of a statistical model, etc...) 

◮	 Let g : IRd → IRk be continuously differentiable (with k < d). 

◮	 Consider the following hypotheses: 

�
H0 : g(θ) = 0 

H1 : g(θ) = 0. 

◮	 E.g. g(θ) = (θ1, θ2) (k = 2), or g(θ) = θ1 − θ2 (k = 1), or... 
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Testing implicit hypotheses (2)
 

◮	 Suppose an asymptotically normal estimator θ̂n is available: 

√ 
ˆ (d)

n	 θn − θ −−−→ Nd(0, Σ(θ)). 
n→∞ 

◮	 Delta method: 

√	 (d)
n	 g(θ̂n)− g(θ) −−−→ Nk (0, Γ(θ)) , 

n→∞ 

where Γ(θ) = ∇g(θ)⊤Σ(θ)∇g(θ) ∈ IRk×k . 

◮	 Assume Σ(θ) is invertible and ∇g(θ) has rank k. So, Γ(θ) is 
invertible and 

√	 (d)
n Γ(θ)−1/2 g(θ̂n)− g(θ) −−−→ Nk (0, Ik) . 

n→∞ 
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Testing implicit hypotheses (3)
 

◮ Then, by Slutsky’s theorem, if Γ(θ) is continuous in θ, 

√ (d)
)−1/2 n Γ(θ̂n g(θ̂n)− g(θ) −−−→ Nk (0, Ik) . 

n→∞ 

◮ Hence, if H0 is true, i.e., g(θ) = 0, 

)⊤Γ−1(ˆ )g(ˆ
(d)

χ2 ng(θ̂n θn θn) −−−→ k. n→∞ 

Tn 

◮ Test with asymptotic level α: 

ψ = 1I{Tn > qα}, 

where qα is the (1− α)-quantile of χ2 (see tables). k 
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The multinomial case: χ 2 test (1) 

Let E = {a1, . . . , aK } be a finite space and (IPp) be the p∈ΔK 

family of all probability distributions on E: 



 

= p = 



 

 .
 

K n 

j=1 

(p1, . . . , pK ) ∈ (0, 1)K :
◮ ΔK pj = 1
 
 

◮ For p ∈ ΔK and X ∼ IPp,
 

IPp[X = aj ] = pj , j = 1, . . . , K.  
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The multinomial case: χ 2 test (2) 

iid
◮	 Let X1, . . . ,Xn ∼ IPp, for some unknown p ∈ ΔK , and let 

p 0 ∈ ΔK be fixed. 

◮ We want to test: 

H0: p = p 0 vs. H1: p = p 0 

with asymptotic level α ∈ (0, 1). 

◮	 Example: If p 0 = (1/K, 1/K, . . . , 1/K), we are testing 
whether IPp is the uniform distribution on E. 
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The multinomial case: χ 2 test (3) 

◮ Likelihood of the model: 

N1 N2 NKLn(X1, . . . ,Xn, p) = p p . . . p ,1 2 K 

where Nj = #{i = 1, . . . , n : Xi = aj }.
 

◮ Let p̂ be the MLE:
 

Nj 
p̂j = , j = 1, . . . , K. 

n 

� p̂ maximizes logLn(X1, . . . ,Xn, p) under the constraint 

K n
pj = 1. 

j=1 
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The multinomial case: χ 2 test (4) 

√ 
◮	 If H0 is true, then n(p̂− p 0) is asymptotically normal, and 

the following holds. 

Theorem 

2 
0K p̂j − pj (d)

n 
n 

−−−→ χ2 
K−1. 

p 0 n→∞
jj=1 

Tn 

◮	 χ2 test with asymptotic level α: ψα = 1I{Tn > qα}, 
where qα is the (1− α)-quantile of χ2 

K−1. 

◮	 Asymptotic p-value of this test: p − value = IP [Z > Tn|Tn], 
where Z ∼ χ2 and Z ⊥⊥ Tn.K−1 
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The Gaussian case: Student’s test (1)
 

iid
◮ Let X1, . . . ,Xn ∼ N (µ, σ2), for some unknown 
µ ∈ IR, σ2 > 0 and let µ0 ∈ IR be fixed, given. 

◮ We want to test: 

H0: µ = µ0 vs. H1: µ = µ0 

with asymptotic level α ∈ (0, 1). 

√ X̄n − µ0 
◮ If σ2 is known: Let Tn = n . Then, Tn ∼ N (0, 1) 

σ 
and 

ψα = 1I{|Tn| > qα/2}
 
is a test with (non asymptotic) level α.
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The Gaussian case: Student’s test (2)
 

If σ2 is unknown: 

√ X̄n − µ0 
◮ Let TTn = n − 1 √ , where Sn is the sample variance. 

Sn 

◮	 Cochran’s theorem: 

¯◮	 Xn ⊥⊥ Sn;
 

nSn  
◮ ∼ χ2 

n−1
. 

σ2 

◮	 Hence, TTn ∼ tn−1: Student’s distribution with n − 1 degrees 
of freedom. 
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The Gaussian case: Student’s test (3) 

◮ Student’s test with (non asymptotic) level α ∈ (0, 1): 

ψα = 1I{|TTn| > qα/2}, 

where qα/2 is the (1− α/2)-quantile of tn−1. 

◮ If H1 is µ > µ0, Student’s test with level α ∈ (0, 1) is: 

ψ ′ = 1I{TTn > qα},α 

where qα is the (1− α)-quantile of tn−1. 

◮ Advantage of Student’s test:
 
◮ Non asymptotic
 
◮ Can be run on small samples
 

◮ Drawback of Student’s test: It relies on the assumption that 
the sample is Gaussian. 
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Two-sample test: large sample case (1) 

◮	 Consider two samples: X1, . . . ,Xn and Y1, . . . , Ym, of 
independent random variables such that 

IE[X1] = · · · = IE[Xn] = µX 

, and 
IE[Y1] = · · · = IE[Ym] = µY 

◮ Assume that the variances of are known so assume (without 
loss of generality) that 

var(X1) = · · · = var(Xn) = var(Y1) = · · · = var(Ym) = 1 

◮ We want to test: 

H0: µX = µY vs. H1: µX = µY 

with asymptotic level α ∈ (0, 1). 
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Two-sample test: large sample case (2) 
From CLT: √ (d)¯n(Xn − µX ) −−−→ N (0, 1) 

n→∞ 

and 
√ (d) √ (d)
m(Ȳm−µY ) −−−−→ N (0, 1) ⇒ n(Ȳm−µY ) −−−−→ N (0, γ)

n→∞ 
m→∞ 

m→∞ 

m 
→γ 

n 

Moreover, the two samples are independent so 

√ √ (d)¯ ¯n(Xn − Ym) + n(µX − µY ) −−−−→ N (0, 1 + γ)
n→∞ 
m→∞ 
m 
→γ 

n 

Under H0 : µX = µY : 

√ X̄n − Ȳm (d)
n −−−−→ N (0, 1)

n→∞
J

1 +m/n m→∞ 
m 
→γ 

n 

¯ ¯√ Xn − Ym
{ }

Test: ψα = 1I n > qα/2J
1 +m/n 36/37 



Two-sample T-test 

◮ If the variances are unknown but we know that 
Xi ∼ N (µX , σ

2 ), Yi ∼ N (µY , σ
2 ).X Y 

◮ Then 
σ2 σ2 X Y¯ ¯Xn − Ym ∼ N

(
µX − µY , + 

)
n m 

◮ Under H0: 
¯ ¯Xn − Ym ∼ N (0, 1) J

σ2 /n + σ2 /m X Y 

◮ For unknown variance: 

¯ ¯Xn − Ym ∼ tNJ
S2 /n + S2 /m X Y 

where (
S2 /n + S2 /m

)2 
X YN = 
S4 S4 
X + Y 

n2(n−1) m2(m−1) 
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