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Chapter 9: Principal Component Analysis (PCA)  
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Multivariate statistics and review of linear algebra (1) 

�	 Let X be a d-dimensional random vector and X1, . . . , Xn be 
n independent copies of X. 

Write Xi = (X1 

� Denote by X the random n × d matrix 
i

d
i )

T, . . . , X , i = 1, . . . , n.  

⎞⎛ 
XT· · · · · · 1 
. .  .  

⎜⎝  ⎟⎠ X =  .  

nXT· · · · · · 
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Multivariate statistics and review of linear algebra (2)  

Assume that E[IXI22] < ∞. 

Mean of X:   T 
E[X] = E[X1], . . . , E[Xd] .  

Covariance matrix of X: the matrix Σ = (σj,k)j,k=1,...,d, where  

σj,k = cov(Xj , Xk).  

It is easy to see that   
Σ = E[XXT] − E[X]E[X]T = E (X − E[X])(X − E[X])T . 

3/16 



�

  
�

�

Multivariate statistics and review of linear algebra (3)  

Empirical mean of X1, . . . , Xn: 

n� T1¯ X̄1 X̄dX = Xi = , . . . , . 
n 

i=1 

Empirical covariance of X1, . . . , Xn: the matrix 
S = (sj,k)j,k=1,...,d where sj,k is the empirical covariance of 
the Xi

j , Xi
k , i = 1 . . . , n. 

It is easy to see that 

n n
1 � 1 �� � � �T

S = XiX
T − X̄X̄T = Xi − X̄ Xi − X̄ .i n n 

i=1 i=1 
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Multivariate statistics and review of linear algebra (4)  

¯Note that X =
1 
XT1, where 1 = (1, . . . , 1)T ∈ Rd . 

n 

Note also that 

1 1 1 
S = XTX − X11TX = XTHX,

2n n n 

where H = In − 1 11T . n 

H is an orthogonal projector: H2 = H, HT = H. (on what 
subspace ?) 

If u ∈ Rd , 

� uTΣu is the variance of uTX; 
� uTSu is the sample variance of uTX1, . . . , uTXn. 
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Multivariate statistics and review of linear algebra (5)  

In particular, uTSu measures how spread (i.e., diverse) the 
points are in direction u. 

If uTSu = 0, then all Xi’ s are in an affine subspace 
orthogonal to u. 

If uTΣu = 0, then X is almost surely in an affine subspace 
orthogonal to u. 

If uTSu is large with IuI2 = 1, then the direction of u 
explains well the spread (i.e., diversity) of the sample. 
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Multivariate statistics and review of linear algebra (6)  

In particular, Σ and S are symmetric, positive semi-definite. 

Any real symmetric matrix A ∈ Rd×d has the decomposition 

A = P DP T , 

where: 

P is a d × d orthogonal matrix, i.e., PP T = P TP = Id; 

D is diagonal. 

The diagonal elements of D are the eigenvalues of A and the 
columns of P are the corresponding eigenvectors of A. 

A is semi-definite positive iff all its eigenvalues are 
nonnegative. 
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Principal Component Analysis: Heuristics (1)  

The sample X1, . . . , Xn makes a cloud of points in Rd . 

In practice, d is large. If d > 3, it becomes impossible to 
represent the cloud on a picture. 

Question: Is it possible to project the cloud onto a linear 
subspace of dimension d' < d by keeping as much information 
as possible ? 

Answer: PCA does this by keeping as much covariance 
structure as possible by keeping orthogonal directions that 
discriminate well the points of the cloud. 
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Principal Component Analysis: Heuristics (2)  

Idea: Write S = P DP T, where 

P = (v1, . . . , vd) is an orthogonal matrix, i.e., 
TIvj I2 = 1, vj vk = 0, ∀j = k. ⎞⎛ 

D = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

λ1 

λ2 0 
. . . 

0 . . . 
λd 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, with λ1 ≥ . . . ≥ λd ≥ 0. 

Note that D is the empirical covariance matrix of the 
P TXi’s, i = 1, . . . , n. 

In particular, λ1 is the empirical variance of the v1 
TXi’s; λ2 is 

the empirical variance of the v2 
TXi’s, etc... 
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Principal Component Analysis: Heuristics (3)  

So, each λj measures the spread of the cloud in the direction 
vj . 

In particular, v1 is the direction of maximal spread. 

Indeed, v1 maximizes the empirical covariance of 
aTX1, . . . , aTXn over a ∈ Rd such that IaI2 = 1. 

Proof: For any unit vector a, show that 

T 
a TΣa = P T a D P T a ≤ λ1, 

with equality if a = v1. 
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Principal Component Analysis: Main principle  
Idea of the PCA: Find the collection of orthogonal directions 
in which the cloud is much spread out. 

Theorem 

v1 ∈ argmax u TSu, 
lul=1 

v2 ∈ argmax u TSu, 
lul=1,u⊥v1 

· · · 

vd ∈ argmax u TSu. 
lul=1,u⊥vj ,j=1,...,d−1 

Hence, the k orthogonal directions in which the cloud is the 
most spread out correspond exactly to the eigenvectors 
associated with the k largest values of S. 

11/16 



Principal Component Analysis: Algorithm (1)  

1.	 Input: X1, . . . , Xn: cloud of n points in dimension d. 

2.	 Step 1: Compute the empirical covariance matrix. 

3.	 Step 2: Compute the decomposition S = P DP T, where 
D = Diag(λ1, . . . , λd), with λ1 ≥ λ2 ≥ . . . ≥ λd and 
P = (v1, . . . , vd) is an orthogonal matrix. 

4.	 Step 3: Choose k < d and set Pk = (v1, . . . , vk) ∈ Rd×k . 

5.	 Output: Y1, . . . , Yn, where 

Yi = Pk 
TXi ∈ Rk , i = 1, . . . , n. 

Question: How to choose k ?  
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Principal Component Analysis: Algorithm (2)

Question: How to choose k ?

Experimental rule: Take k where there is an inflection point in
the sequence λ1, . . . , λd (scree plot). 

Define a criterion: Take k such that

λ1 + . . . + λk ≥ 1 − α,
λ1 + . . . + λd 

for some α ∈ (0, 1) that determines the approximation error
that the practitioner wants to achieve.

Remark: λ1 + . . . + λk is called the variance explained by the 
PCA and λ1 + . . . + λd = Tr(S) is the total variance. 

Data visualization: Take k = 2 or 3.
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Example: Expression of 500,000 genes among 1400
Europeans

Reprinted by permission from 
Macmillan Publishers Ltd: Nature. 
Source: John Novembre, et al. "Genes 
mirror geography within Europe." 
Nature 456 (2008): 98-101. © 2008.
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Principal Component Analysis - Beyond practice (1)
PCA is an algorithm that reduces the dimension of a cloud of
points and keeps its covariance structure as much as possible.

In practice this algorithm is used for clouds of points that are
not necessarily random.

In statistics, PCA can be used for estimation.

If X1, . . . , Xn are i.i.d. random vectors in Rd, how to 
estimate their population covariance matrix Σ ?

If n » d, then the empirical covariance matrix S is a
consistent estimator.

In many applications, n « d (e.g., gene expression). Solution:
sparse PCA
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Principal Component Analysis - Beyond practice (2)
It may be known beforehand that Σ has (almost) low rank.

Then, run PCA on S: Write S ≈ S ' , where ⎞⎛ 

S ' = P  

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 

λ2 0
. . . 

λk 
0

0 . . . 
0

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P T .  

S ' will be a better estimator of S under the low-rank 
assumption.

A theoretical analysis would lead to an optimal choice of the
tuning parameter k.
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