18.650
 Statistics for Applications

Chapter 4: The Method of Moments

Weierstrass Approximation Theorem (WAT)

Theorem
Let f be a continuous function on the interval $[a, b]$, then, for any $\varepsilon>0$, there exists $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{R}$ such that

$$
\max _{x \in[a, b]}\left|f(x)-\sum_{k=0}^{d} a_{k} x^{k}\right|<\varepsilon .
$$

In word: "continuous functions can be arbitrarily well approximated by polynomials"

Statistical application of the WAT (1)

- Let X_{1}, \ldots, X_{n} be an i.i.d. sample associated with a (identified) statistical model $\left(E,\left\{\mathbb{P}_{\theta}\right\}_{\theta \in \Theta}\right)$. Write θ^{*} for the true parameter.
- Assume that for all θ, the distribution \mathbb{P}_{θ} has a density f_{θ}.
- If we find θ such that

$$
\int h(x) f_{\theta^{*}}(x) d x=\int h(x) f_{\theta}(x) d x
$$

for all (bounded continuous) functions h, then $\theta=\theta^{*}$.

- Replace expectations by averages: find estimator $\hat{\theta}$ such that

$$
\frac{1}{n}{ }_{i=1}^{n} h\left(X_{i}\right)=\int h(x) f_{\hat{\theta}}(x) d x
$$

for all (bounded continuous) functions h. There is an infinity of such functions: not doable!

Statistical application of the WAT (2)

- By the WAT, it is enough to consider polynomials:

$$
\frac{1}{n}{ }_{i=1}^{n=0} a_{k} X_{i}^{k}={ }_{k=0}^{d} a_{k} x^{k} f_{\hat{\theta}}(x) d x, \quad \forall a_{0}, \ldots, a_{d} \in \mathbb{R}
$$

Still an infinity of equations!

- In turn, enough to consider

$$
\frac{1}{n}{ }_{i=1}^{n} X_{i}^{k}=\quad x^{k} f_{\hat{\theta}}(x) d x, \quad \forall k=1, \ldots, d
$$

(only $d+1$ equations)

- The quantity $m_{k}(\theta):=\quad x^{k} f_{\theta}(x) d x$ is the k th moment of \mathbb{P}_{θ}. Can also be written as

$$
m_{k}(\theta)=\mathbb{E}_{\theta}\left[X^{k}\right]
$$

Gaussian quadrature (1)

- The Weierstrass approximation theorem has limitations:

1. works only for continuous functions (not really a problem!)
2. works only on intervals $[a, b]$
3. Does not tell us what d (\# of moments) should be

- What if E is discrete: no PDF but PMF $p(\cdot)$?
- Assume that $E=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is finite with r possible values. The PMF has $r-1$ parameters:

$$
\begin{array}{r}
p\left(x_{1}\right), \ldots, p\left(x_{r-1}\right) \\
r-1
\end{array}
$$

because the last one: $p\left(x_{r}\right)=1-\quad p\left(x_{j}\right)$ is given by the $j=1$
first $r-1$.

- Hopefully, we do not need much more than $d=r-1$ moments to recover the PMF $p(\cdot)$.

Gaussian quadrature (2)

- Note that for any $k=1, \ldots, r_{1}$,

$$
m_{k}=\mathbb{E}\left[X^{k}\right]={ }_{j=1} p\left(x_{j}\right) x_{j}^{k}
$$

and

$$
{ }_{j=1}^{r} p\left(x_{j}\right)=1
$$

This is a system of linear equations with unknowns $p\left(x_{1}\right), \ldots, p\left(x_{r}\right)$.

- We can write it in a compact form:

$$
\left(\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \cdots & x_{r}^{1} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{r}^{2} \\
\vdots & & \ddots & \vdots \\
x_{1}^{r-1} & x_{2}^{r-1} & \cdots & x_{r}^{r-1} \\
1 & 1 & \cdots & 1
\end{array}\right) \cdot\left(\begin{array}{c}
p\left(x_{1}\right) \\
p\left(x_{2}\right) \\
\vdots \\
p\left(x_{r-1}\right) \\
p\left(x_{r}\right)
\end{array}\right)=\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{r-1} \\
1
\end{array}\right)
$$

Gaussian quadrature (2)

- Check if matrix is invertible: Vandermonde determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \cdots & x_{r}^{1} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{r}^{2} \\
\vdots & & \ddots & \vdots \\
x_{1}^{r-1} & x_{2}^{r-1} & \cdots & x_{r}^{r-1} \\
1 & 1 & \cdots & 1
\end{array}\right)=\prod_{1<j<k<r}\left(x_{j}-x_{k}\right) \neq 0
$$

- So given m_{1}, \ldots, m_{r-1}, there is a unique PMF that has these moments. It is given by

$$
\left(\begin{array}{c}
p\left(x_{1}\right) \\
p\left(x_{2}\right) \\
\vdots \\
p\left(x_{r-1}\right) \\
p\left(x_{r}\right)
\end{array}\right)=\left(\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \cdots & x_{r}^{1} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{r}^{2} \\
\vdots & & \ddots & \vdots \\
x_{1}^{r-1} & x_{2}^{r-1} & \cdots & x_{r}^{r-1} \\
1 & 1 & \cdots & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{r-1} \\
1
\end{array}\right)
$$

Conclusion from WAT and Gaussian quadrature

- Moments contain important information to recover the PDF or the PMF
- If we can estimate these moments accurately, we may be able to recover the distribution
- In a parametric setting, where knowing the distribution \mathbb{P}_{θ} amounts to knowing θ, it is often the case that even less moments are needed to recover θ. This is on a case-by-case basis.
- Rule of thumb if $\theta \in \Theta \subset \mathbb{R}^{d}$, we need d moments.

Method of moments (1)

Let X_{1}, \ldots, X_{n} be an i.i.d. sample associated with a statistical model $\left(E,\left(\mathbb{P}_{\theta}\right)_{\theta \in \Theta}\right)$. Assume that $\Theta \subseteq \mathbb{R}^{d}$, for some $d \geq 1$.

- Population moments: Let $m_{k}(\theta)=\mathbb{E}_{\theta}\left[X_{1}^{k}\right], \quad 1 \leq k \leq d$.
- Empirical moments: Let $\hat{m}_{k}=\overline{X_{n}^{k}}=\frac{1}{n}{ }_{i=1}^{n} X_{i}^{k}, \quad 1 \leq k \leq d$.
- Let

$$
\begin{aligned}
\psi: \Theta \subset \mathbb{R}^{d} & \rightarrow \mathbb{R}^{d} \\
\theta & \mapsto\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)
\end{aligned}
$$

Method of moments (2)

Assume ψ is one to one:

$$
\theta=\psi^{-1}\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)
$$

Definition

Moments estimator of θ :

$$
\hat{\theta}_{n}^{M M}=\psi^{-1}\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right)
$$

provided it exists.

Method of moments (3)

Analysis of $\hat{\theta}_{n}^{M M}$

- Let $M(\theta)=\left(m_{1}(\theta), \ldots, m_{d}(\theta)\right)$;
- Let $\hat{M}=\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right)$.
- Let $\Sigma(\theta)=\mathbb{V}_{\theta}\left(X, X^{2}, \ldots, X^{d}\right)$ be the covariance matrix of the random vector $\left(X, X^{2}, \ldots, X^{d}\right)$, where $X \sim \mathbb{P}_{\theta}$.
- Assume ψ^{-1} is continuously differentiable at $M(\theta)$. Write $\nabla \psi^{-1}{ }_{M(\theta)}$ for the $d \times d$ gradient matrix at this point.

Method of moments (4)

- LLN: $\hat{\theta}_{n}^{M M}$ is weakly/strongly consistent.
- CLT:

$$
\sqrt{n}(\hat{M}-M(\theta)) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Sigma(\theta)) \quad\left(\text { w.r.t. } \mathbb{P}_{\theta}\right)
$$

Hence, by the Delta method (see next slide):

Theorem

$$
\sqrt{n}\left(\hat{\theta}_{n}^{M M}-\theta\right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Gamma(\theta)) \quad\left(\text { w.r.t. } \mathbb{P}_{\theta}\right)
$$

where $\Gamma(\theta)=\left[\begin{array}{lll}\nabla \psi^{-1} & & M(\theta)\end{array}\right]^{\top} \Sigma(\theta)\left[\begin{array}{ll}\nabla \psi^{-1} & \\ M(\theta)\end{array}\right]$.

Multivariate Delta method

Let $\left(T_{n}\right)_{n \geq 1}$ sequence of random vectors in $\mathbb{R}^{p}(p \geq 1)$ that satisfies

$$
\sqrt{n}\left(T_{n}-\theta\right) \underset{n \rightarrow \infty}{(d)} \mathcal{N}(0, \Sigma)
$$

for some $\theta \in \mathbb{R}^{p}$ and some symmetric positive semidefinite matrix $\Sigma \in \mathbb{R}^{p \times p}$.

Let $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{k}(k \geq 1)$ be continuously differentiable at θ. Then,
where $\nabla g(\theta)=\left(\frac{\partial g_{j}}{\partial \theta_{i}}\right)_{1 \leq i \leq d, 1 \leq j \leq k} \in \mathbb{R}^{k \times d}$.

MLE vs. Moment estimator

- Comparison of the quadratic risks: In general, the MLE is more accurate.
- Computational issues: Sometimes, the MLE is intractable.
- If likelihood is concave, we can use optimization algorithms (Interior point method, gradient descent, etc.)
- If likelihood is not concave: only heuristics. Local maxima. (Expectation-Maximization, etc.)

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

