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Total variation distance (1)
 

Let 
(
E, (IPθ)θ∈Θ

) 
be a statistical model associated with a sample 

of i.i.d. r.v. X1, . . . ,Xn. Assume that there exists θ∗ ∈ Θ such 
that X1 ∼ IPθ∗ : θ

∗ is the true parameter. 

Statistician’s goal: given X1, . . . ,Xn, find an estimator 
ˆ ˆθ = θ(X1, . . . ,Xn) such that IPˆ is close to IPθ∗ for the true θ 

parameter θ∗ .
 
This means:

 
IPˆ(A)− IPθ∗ (A)

  is small for all A ⊂ E.
 
θ

Definition 

The total variation distance between two probability measures IPθ 

and IPθ′ is defined by 

TV(IPθ, IPθ′ ) = max 
  IPθ(A)− IPθ′ (A)

  . 
A⊂E
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Total variation distance (2)
 

Assume that E is discrete (i.e., finite or countable). This includes 
Bernoulli, Binomial, Poisson, . . . 

Therefore X has a PMF (probability mass function): 
IPθ(X = x) = pθ(x) for all x ∈ E, 

L
pθ(x) ≥ 0, pθ(x) = 1 . 

x∈E 

The total variation distance between IPθ and IPθ′ is a simple 
function of the PMF’s pθ and pθ′ : 

1 L
TV(IPθ, IPθ′ ) = pθ(x)− pθ′ (x) . 

2 
x∈E 
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Total variation distance (3)
 

Assume that E is continuous. This includes Gaussian, Exponential, 
. . . 

Assume that X has a density IPθ(X ∈ A) = 
J

fθ(x)dx for all A 

A ⊂ E. l
fθ(x) ≥ 0, fθ(x)dx = 1 . 

E 

The total variation distance between IPθ and IPθ′ is a simple 
function of the densities fθ and fθ′ : 

1 
l 

TV(IPθ, IPθ′ ) = fθ(x)− fθ′ (x) dx . 
2 E 
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Total variation distance (4)
 

Properties of Total variation: 

◮ TV(IPθ, IPθ′ ) = TV(IPθ′ , IPθ) (symmetric)
 

◮ TV(IPθ, IPθ′ ) ≥ 0
 
◮ If TV(IPθ, IPθ′ ) = 0 then IPθ = IPθ′ (definite)
 

◮ TV(IPθ, IPθ′ ) ≤ TV(IPθ, IPθ′′ ) + TV(IPθ′′ , IPθ′ ) (triangle
 
inequality) 

These imply that the total variation is a distance between 
probability distributions. 
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Total variation distance (5)
 

An estimation strategy: Build an estimator T for all TV(IPθ, IPθ∗ )

θ ∈ Θ. Then find ˆ TV(IPθ, IPθ∗ ).θ that minimizes the function θ  → T
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Total variation distance (5)
 

An estimation strategy: Build an estimator T for all TV(IPθ, IPθ∗ )

θ ∈ Θ. Then find ˆ TV(IPθ, IPθ∗ ).θ that minimizes the function θ  → T

problem: Unclear how to build TTV(IPθ, IPθ∗ )! 
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Kullback-Leibler (KL) divergence (1)
 

There are many distances between probability measures to replace 
total variation. Let us choose one that is more convenient. 

Definition 

The Kullback-Leibler (KL) divergence between two probability 
measures IPθ and IPθ′ is defined by 

 

KL(IPθ, IPθ′ ) = 

 
L 

x∈E 

pθ(x) log
( pθ(x) 
pθ′ (x)

) 
if E is discrete 

 
l 

E 

fθ(x) log
( fθ(x) 
fθ′ (x)

)
dx if E is continuous 
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Kullback-Leibler (KL) divergence (2)
 

Properties of KL-divergence: 

◮ KL(IPθ, IPθ′ )  = KL(IPθ′ , IPθ) in general 

◮ KL(IPθ, IPθ′ ) ≥ 0 
◮ If KL(IPθ, IPθ′ ) = 0 then IPθ = IPθ′ (definite) 

◮ KL(IPθ, IPθ′ ) i KL(IPθ, IPθ′′ ) + KL(IPθ′′ , IPθ′ ) in general 

Not a distance.
 

This is is called a divergence.
 

Asymmetry is the key to our ability to estimate it!
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Kullback-Leibler (KL) divergence (3)
 

KL(IPθ∗ , IPθ) = IEθ∗ 

[ 
log
(pθ∗ (X))] 
pθ(X)

= IEθ∗ 
[ 
log pθ∗ (X)

] 
− IEθ∗ 

[ 
log pθ(X)

] 

So the function θ  → KL(IPθ∗ , IPθ) is of the form: 
“constant” − IEθ∗ 

[ 
log pθ(X)

] 

n
1 

Can be estimated: IEθ∗ [h(X)] -
L 

h(Xi) (by LLN) 
n 

i=1 

n
1 

KL(IPθ∗ , IPθ) = “constant” − 
L 

log pθ(Xi)T
n 

i=1 
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Kullback-Leibler (KL) divergence (4) 

KL(IPθ∗ , IPθ)

KL(IPθ∗ , IPθ)T

T
n

n 
i=1 

L1 
“constant” − log pθ(Xi)=
 

n

θ∈Θ n 
i=1 

L1
 
min
 ⇔ min −
 log pθ(Xi) 
θ∈Θ

nL1 ⇔ max 

Ln
⇔ max 

log pθ(Xi) 
θ∈Θ n 

i=1 

log pθ(Xi) 
θ∈Θ 

i=1 
n

pθ(Xi)
n

⇔ max 
i=1 

This is the maximum likelihood principle. 

θ∈Θ 
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Interlude: maximizing/minimizing functions (1)
 

Note that 
min −h(θ) ⇔ max h(θ) 
θ∈Θ θ∈Θ 

In this class, we focus on maximization. 

Maximization of arbitrary functions can be difficult: 

Example: θ  → �n (θ −Xi)i=1
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Interlude: maximizing/minimizing functions (2)
 

Definition 

A function twice differentiable function h : Θ ⊂ IR → IR is said to 
be concave if its second derivative satisfies 

h ′′ (θ) ≤ 0 , ∀ θ ∈ Θ 

It is said to be strictly concave if the inequality is strict: h ′′ (θ) < 0 

Moreover, h is said to be (strictly) convex if −h is (strictly) 
concave, i.e. h ′′ (θ) ≥ 0 (h ′′ (θ) > 0). 

Examples: 

◮ Θ = IR, h(θ) = −θ2 ,√ 
◮ Θ = (0,∞), h(θ) = θ,
 

◮ Θ = (0,∞), h(θ) = log θ,
 

◮ Θ = [0, π], h(θ) = sin(θ)
 

◮ Θ = IR, h(θ) = 2θ − 3
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Interlude: maximizing/minimizing functions (3) 
More generally for a multivariate function: h : Θ ⊂ IRd → IR, 
d ≥ 2, define the 

 ∈ IRd 




◮ gradient vector: ∇h(θ) = 

 

  

∂h 
∂θ1 

(θ) 
.
 . . 

∂h 
∂θd 

(θ) 

◮ Hessian matrix: 
∂2h ∂2h(θ) · · · (θ)

∂θ1∂θ1 ∂θ1∂θd 

 

 ∇2h(θ) =
 

 

  
.
 ∈ IRd×d. . 

∂2h ∂2h(θ) · · · (θ)
∂θd∂θd ∂θd∂θd 

 

h is concave ⇔ x⊤∇2h(θ)x ≤ 0 ∀x ∈ IRd, θ ∈ Θ. 

h is strictly concave ⇔ x⊤∇2h(θ)x < 0 ∀x ∈ IRd, θ ∈ Θ. 

Examples: 

◮ Θ = IR2 , h(θ) = −θ1
2 − 2θ2

2 or h(θ) = −(θ1 − θ2)
2
 

◮ Θ = (0,∞), h(θ) = log(θ1 + θ2),
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Interlude: maximizing/minimizing functions (4)
 

Strictly concave functions are easy to maximize: if they have a 
maximum, then it is unique. It is the unique solution to 

h ′ (θ) = 0 , 

or, in the multivariate case 

∇h(θ) = 0 ∈ IRd . 

There are may algorithms to find it numerically: this is the theory 
of “convex optimization”. In this class, often a closed form 
formula for the maximum. 
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Likelihood, Discrete case (1)
 

Let 
(
E, (IPθ)θ∈Θ

) 
be a statistical model associated with a sample 

of i.i.d. r.v. X1, . . . ,Xn. Assume that E is discrete (i.e., finite or 
countable). 

Definition 

The likelihood of the model is the map Ln (or just L) defined as: 

Ln : En ×Θ → IR 
(x1, . . . , xn, θ)  → IPθ[X1 = x1, . . . ,Xn = xn]. 
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Likelihood, Discrete case (2)
 

iid
Example 1 (Bernoulli trials): If X1, . . . ,Xn ∼ Ber(p) for some 
p ∈ (0, 1): 

◮ E = {0, 1};
 
◮ Θ = (0, 1);
 

◮ ∀(x1, . . . , xn) ∈ {0, 1}n , ∀p ∈ (0, 1),
 
n 

L(x1, . . . , xn, p) = 
n 

IPp[Xi = xi] 
i=1 
n 

= 
n 

p xi (1− p)1−xi 

i=1 

xii=1 i=1 = p
�

n xi (1− p)n−
�

n 
. 
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Likelihood, Discrete case (3)
 

Example 2 (Poisson model): 
iid

If X1, . . . ,Xn ∼ Poiss(λ) for some λ > 0: 

◮ E = IN;
 

◮ Θ = (0,∞);
 

◮ ∀(x1, . . . , xn) ∈ INn , ∀λ > 0,
 

n 

L(x1, . . . , xn, p) = 
n 

IPλ[Xi = xi] 
i=1 
n 

−λ λ
x 
i = 

n 
e 

xi! 
i=1 

n 
λ i=1 xi 

−nλ = e . 
x1! . . . xn! 
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Likelihood, Continuous case (1)
 

Let 
(
E, (IPθ)θ∈Θ

) 
be a statistical model associated with a sample 

of i.i.d. r.v. X1, . . . ,Xn. Assume that all the IPθ have density fθ. 

Definition 

The likelihood of the model is the map L defined as: 

L : En ×Θ → IR 
n(x1, . . . , xn, θ)  → fθ(xi).i=1 
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Likelihood, Continuous case (2)
 

iid
Example 1 (Gaussian model): If X1, . . . ,Xn ∼ N (µ, σ2), for 
some µ ∈ IR, σ2 > 0: 

◮ E = IR;
 

◮ Θ = IR× (0,∞)
 

◮ ∀(x1, . . . , xn) ∈ IRn , ∀(µ, σ2) ∈ IR× (0,∞),
 

n
  

1 1 
L(x1, . . . , xn, µ, σ

2) = √ exp − 
L

(xi − µ)2 . 
2π)n 2σ2(σ 

i=1 
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Maximum likelihood estimator (1)
 

Let X1, . . . ,Xn be an i.i.d. sample associated with a statistical 
model 

(
E, (IPθ)θ∈Θ

) 
and let L be the corresponding likelihood. 

Definition 

The likelihood estimator of θ is defined as: 

θ̂MLE = argmax L(X1, . . . ,Xn, θ),n 
θ∈Θ 

provided it exists. 

Remark (log-likelihood estimator): In practice, we use the fact 
that 

θ̂MLE = argmax logL(X1, . . . ,Xn, θ).n 
θ∈Θ 
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Maximum likelihood estimator (2)
 

Examples 

¯◮ Bernoulli trials: p̂MLE = Xn.n 

λMLE ¯◮ Poisson model: ˆ = Xn.n 

◮ Gaussian model: 
(
µ̂n, σ̂

2
) 
= 
(
X̄n, Ŝn

)
.n
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Maximum likelihood estimator (3)
 

Definition: Fisher information 

Define the log-likelihood for one observation as: 

ℓ(θ) = logL1(X, θ), θ ∈ Θ ⊂ IRd 

Assume that ℓ is a.s. twice differentiable. Under some regularity 
conditions, the Fisher information of the statistical model is 
defined as: 

I(θ) = IE
[
∇ℓ(θ)∇ℓ(θ)⊤

] 
− IE

[
∇ℓ(θ)

]
IE
[
∇ℓ(θ)

]⊤ 
= −IE

[
∇2ℓ(θ)

] 
. 

If Θ ⊂ IR, we get:
 

I(θ) = var
[
ℓ ′ (θ)

] 
= −IE

[
ℓ ′′ (θ)

]  
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Maximum likelihood estimator (4) 

Theorem 

Let θ∗ ∈ Θ (the true parameter). Assume the following: 

1. The model is identified. 

2. For all θ ∈ Θ, the support of IPθ does not depend on θ; 

3. θ∗ is not on the boundary of Θ; 

4. I(θ) is invertible in a neighborhood of θ∗ ; 

5. A few more technical conditions. 

θMLE Then, ˆ satisfies: n
 

θMLE IP

◮ ˆ −−−→ θ ∗ w.r.t. IPθ∗ ;n 

n→∞ 

√ (d)
◮ n

(
θ̂MLE − θ ∗

) 
−−−→ N 

(
0, I(θ ∗ )−1

) 
w.r.t. IPθ∗ .n 

n→∞ 
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