18.650 Statistics for Applications

Chapter 3: Maximum Likelihood Estimation

Total variation distance (1)

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \ldots, X_n . Assume that there exists $\theta^* \in \Theta$ such that $X_1 \sim \mathbb{P}_{\theta^*}$: θ^* is the **true** parameter.

Statistician's goal: given X_1, \ldots, X_n , find an estimator $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ such that $\mathbb{P}_{\hat{\theta}}$ is close to \mathbb{P}_{θ^*} for the true parameter θ^* . This means: $|\mathbb{P}_{\hat{\theta}}(A) - \mathbb{P}_{\theta^*}(A)|$ is **small** for all $A \subset E$. **Definition**

The *total variation distance* between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is defined by

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \max_{A \subset E} \left| \mathbb{P}_{\theta}(A) - \mathbb{P}_{\theta'}(A) \right|.$$

Total variation distance (2)

Assume that E is discrete (i.e., finite or countable). This includes Bernoulli, Binomial, Poisson, ...

Therefore X has a PMF (probability mass function): $\mathbb{P}_{\theta}(X = x) = p_{\theta}(x)$ for all $x \in E$,

$$p_{\theta}(x) \ge 0, \quad \sum_{x \in E} p_{\theta}(x) = 1.$$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is a simple function of the PMF's p_{θ} and $p_{\theta'}$:

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \sum_{x \in E} p_{\theta}(x) - p_{\theta'}(x) .$$

Total variation distance (3)

Assume that E is continuous. This includes Gaussian, Exponential, \dots

Assume that X has a density $\mathbb{P}_{\theta}(X \in A) = \int_{A} f_{\theta}(x) dx$ for all $A \subset E$. $f_{\theta}(x) \ge 0, \quad \int_{E} f_{\theta}(x) dx = 1.$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is a simple function of the densities f_{θ} and $f_{\theta'}$:

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \int_{E} f_{\theta}(x) - f_{\theta'}(x) \, dx \, .$$

Total variation distance (4)

Properties of Total variation:

- $\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \mathsf{TV}(\mathbb{P}_{\theta'}, \mathbb{P}_{\theta})$ (symmetric)
- $\mathsf{TV}(\mathbb{I}_{\theta}, \mathbb{I}_{\theta'}) \ge 0$
- If $\mathsf{TV}(\mathbb{I}_{\theta}, \mathbb{I}_{\theta'}) = 0$ then $\mathbb{I}_{\theta} = \mathbb{I}_{\theta'}$ (definite)
- ► $\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) \leq \mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta''}) + \mathsf{TV}(\mathbb{P}_{\theta''}, \mathbb{P}_{\theta'})$ (triangle inequality)

These imply that the total variation is a *distance* between probability distributions.

Total variation distance (5)

An estimation strategy: Build an estimator $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$ for all $\theta \in \Theta$. Then find $\hat{\theta}$ that *minimizes* the function $\theta \mapsto \widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$.

Total variation distance (5)

An estimation strategy: Build an estimator $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$ for all $\theta \in \Theta$. Then find $\hat{\theta}$ that *minimizes* the function $\theta \mapsto \widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$.

problem: Unclear how to build $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})!$

Kullback-Leibler (KL) divergence (1)

There are **many** distances between probability measures to replace total variation. Let us choose one that is more convenient.

Definition

The Kullback-Leibler (KL) divergence between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is defined by

$$\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \begin{cases} \sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)}\right) & \text{ if } E \text{ is discrete} \\ \\ \int_{E} f_{\theta}(x) \log \left(\frac{f_{\theta}(x)}{f_{\theta'}(x)}\right) dx & \text{ if } E \text{ is continuous} \end{cases}$$

Kullback-Leibler (KL) divergence (2)

Properties of KL-divergence:

- $\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) \neq \mathsf{KL}(\mathbb{P}_{\theta'}, \mathbb{P}_{\theta})$ in general
- $\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) \ge 0$
- If $KL(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = 0$ then $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'}$ (definite)
- $\blacktriangleright \mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) \nleq \mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta''}) + \mathsf{KL}(\mathbb{P}_{\theta''}, \mathbb{P}_{\theta'}) \text{ in general}$

Not a distance.

This is is called a *divergence*.

Asymmetry is the key to our ability to estimate it!

Kullback-Leibler (KL) divergence (3)

$$\mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \mathbb{E}_{\theta^*} \Big[\log \Big(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \Big) \Big]$$

$$= \mathbb{E}_{\theta^*} \left[\log p_{\theta^*}(X) \right] - \mathbb{E}_{\theta^*} \left[\log p_{\theta}(X) \right]$$

So the function $\theta \mapsto \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta})$ is of the form: "constant" $-\mathbb{E}_{\theta^*} \left[\log p_{\theta}(X)\right]$

Can be estimated: $\operatorname{I\!E}_{\theta^*}[h(X)] \leadsto \frac{1}{n} \sum_{i=1}^n h(X_i)$ (by LLN)

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

Kullback-Leibler (KL) divergence (4)

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) =$$
 "constant" $-\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$

$$\begin{split} \min_{\theta \in \Theta} \widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) & \Leftrightarrow & \min_{\theta \in \Theta} -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i) \end{split}$$

This is the maximum likelihood principle.

Interlude: maximizing/minimizing functions (1)

Note that

$$\min_{\theta \in \Theta} -h(\theta) \quad \Leftrightarrow \quad \max_{\theta \in \Theta} h(\theta)$$

In this class, we focus on maximization.

Maximization of arbitrary functions can be difficult:

Example: $\theta \mapsto \prod_{i=1}^{n} (\theta - X_i)$

Interlude: maximizing/minimizing functions (2)

Definition

A function twice differentiable function $h: \Theta \subset \mathbb{R} \to \mathbb{R}$ is said to be *concave* if its second derivative satisfies

$$h''(\theta) \le 0, \qquad \forall \ \theta \in \Theta$$

It is said to be *strictly concave* if the inequality is strict: $h''(\theta) < 0$

Moreover, h is said to be (strictly) *convex* if -h is (strictly) concave, i.e. $h''(\theta) \ge 0$ ($h''(\theta) > 0$).

Examples:

$$\begin{split} \bullet \ \Theta &= \mathrm{I\!R}, \ h(\theta) = -\theta^2, \\ \bullet \ \Theta &= (0, \infty), \ h(\theta) = \sqrt{\theta}, \\ \bullet \ \Theta &= (0, \infty), \ h(\theta) = \log \theta, \\ \bullet \ \Theta &= [0, \pi], \ h(\theta) = \sin(\theta) \\ \bullet \ \Theta &= \mathrm{I\!R}, \ h(\theta) = 2\theta - 3 \end{split}$$

Interlude: maximizing/minimizing functions (3)

More generally for a *multivariate* function: $h: \Theta \subset \mathbb{R}^d \to \mathbb{R}$, $d \geq 2$, define the

01 . . .

► gradient vector:
$$\nabla h(\theta) = \begin{pmatrix} \frac{\partial h}{\partial \theta_1}(\theta) \\ \vdots \\ \frac{\partial h}{\partial \theta_d}(\theta) \end{pmatrix} \in \mathbb{R}^d$$

$$\nabla^{2}h(\theta) = \begin{pmatrix} \frac{\partial^{2}h}{\partial\theta_{1}\partial\theta_{1}}(\theta) & \cdots & \frac{\partial^{2}h}{\partial\theta_{1}\partial\theta_{d}}(\theta) \\ & \ddots & \\ \frac{\partial^{2}h}{\partial\theta_{d}\partial\theta_{d}}(\theta) & \cdots & \frac{\partial^{2}h}{\partial\theta_{d}\partial\theta_{d}}(\theta) \end{pmatrix} \in \mathbb{R}^{d \times d}$$

 $\begin{array}{ll} h \text{ is concave} & \Leftrightarrow & x^{\top} \nabla^2 h(\theta) x \leq 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta. \\ h \text{ is strictly concave} & \Leftrightarrow & x^{\top} \nabla^2 h(\theta) x < 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta. \\ \text{Examples:} \end{array}$

•
$$\Theta = \mathbb{R}^2$$
, $h(\theta) = -\theta_1^2 - 2\theta_2^2$ or $h(\theta) = -(\theta_1 - \theta_2)^2$
• $\Theta = (0, \infty)$, $h(\theta) = \log(\theta_1 + \theta_2)$,

Interlude: maximizing/minimizing functions (4)

Strictly concave functions are easy to maximize: if they have a maximum, then it is **unique**. It is the unique solution to

$$h'(\theta) = 0\,,$$

or, in the multivariate case

$$\nabla h(\theta) = 0 \in \mathbb{R}^d$$
.

There are may algorithms to find it numerically: this is the theory of "convex optimization". In this class, often a **closed form formula** for the maximum.

Likelihood, Discrete case (1)

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \ldots, X_n . Assume that E is discrete (i.e., finite or countable).

Definition

The *likelihood* of the model is the map L_n (or just L) defined as:

$$L_n : E^n \times \Theta \to \mathbb{R}$$

(x_1, ..., x_n, \theta) $\mapsto \mathbb{P}_{\theta}[X_1 = x_1, ..., X_n = x_n].$

Likelihood, Discrete case (2)

Example 1 (Bernoulli trials): If $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$ for some $p \in (0, 1)$:

- $E = \{0, 1\};$
- $\Theta = (0, 1);$
- ▶ $\forall (x_1, ..., x_n) \in \{0, 1\}^n, \forall p \in (0, 1),$

$$L(x_1, \dots, x_n, p) = \prod_{i=1}^n \mathbb{P}_p[X_i = x_i]$$

=
$$\prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

=
$$p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}.$$

Likelihood, Discrete case (3)

Example 2 (Poisson model): If $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poiss}(\lambda)$ for some $\lambda > 0$:

•
$$E = \mathbb{N};$$

• $\Theta = (0, \infty);$

$$\blacktriangleright \quad \forall (x_1, \ldots, x_n) \in \mathbb{N}^n, \quad \forall \lambda > 0,$$

$$L(x_1, \dots, x_n, p) = \prod_{i=1}^n \mathbb{P}_{\lambda} [X_i = x_i]$$
$$= \prod_{i=1}^n e^{-\lambda} \frac{\lambda_i^x}{x_i!}$$
$$= e^{-n\lambda} \frac{\lambda \sum_{i=1}^n x_i}{x_1! \dots x_n!}.$$

Likelihood, Continuous case (1)

Let $(\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \ldots, X_n . Assume that all the \mathbb{P}_{θ} have density f_{θ} .

Definition

The *likelihood* of the model is the map L defined as:

$$L : E^n \times \Theta \to \mathbb{R}$$

(x_1, ..., x_n, \theta) $\mapsto \prod_{i=1}^n f_\theta(x_i).$

Likelihood, Continuous case (2)

Example 1 (Gaussian model): If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some $\mu \in \mathbb{R}, \sigma^2 > 0$:

 $\blacktriangleright E = \mathbf{I} \mathbf{R};$

•
$$\Theta = \mathbb{R} \times (0, \infty)$$

• $\forall (x_1, \dots, x_n) \in \mathbb{R}^n, \quad \forall (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty),$
 $L(x_1, \dots, x_n, \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$

Maximum likelihood estimator (1)

Let X_1, \ldots, X_n be an i.i.d. sample associated with a statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ and let L be the corresponding likelihood.

Definition

The *likelihood estimator* of θ is defined as:

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(X_1, \dots, X_n, \theta),$$

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact that

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \log L(X_1, \dots, X_n, \theta).$$

Maximum likelihood estimator (2)

Examples

• Bernoulli trials:
$$\hat{p}_n^{MLE} = \bar{X}_n$$
.

• Poisson model:
$$\hat{\lambda}_n^{MLE} = \bar{X}_n$$
.

• Gaussian model:
$$(\hat{\mu}_n, \hat{\sigma}_n^2) = (\bar{X}_n, \hat{S}_n).$$

Maximum likelihood estimator (3)

Definition: Fisher information

Define the log-likelihood for one observation as:

$$\ell(\theta) = \log L_1(X, \theta), \quad \theta \in \Theta \subset \mathbb{R}^d$$

Assume that ℓ is a.s. twice differentiable. Under some regularity conditions, the *Fisher information* of the statistical model is defined as:

$$I(\theta) = \mathbb{E}\left[\nabla \ell(\theta) \nabla \ell(\theta)^{\top}\right] - \mathbb{E}\left[\nabla \ell(\theta)\right] \mathbb{E}\left[\nabla \ell(\theta)\right]^{\top} = -\mathbb{E}\left[\nabla^{2} \ell(\theta)\right].$$

If $\Theta \subset {\rm I\!R}$, we get:

$$I(\theta) = \operatorname{var} \left[\ell'(\theta) \right] = -\operatorname{I\!E} \left[\ell''(\theta) \right]$$

Maximum likelihood estimator (4)

Theorem

Let $\theta^* \in \Theta$ (the *true* parameter). Assume the following:

- 1. The model is identified.
- 2. For all $\theta \in \Theta$, the support of \mathbb{P}_{θ} does not depend on θ ;
- 3. θ^* is not on the boundary of Θ ;
- 4. $I(\theta)$ is invertible in a neighborhood of θ^* ;
- 5. A few more technical conditions.

Then, $\hat{\theta}_n^{MLE}$ satisfies:

$$\begin{array}{l} \bullet \ \hat{\theta}_n^{MLE} \xrightarrow{\mathbb{P}} \theta^* \quad \text{ w.r.t. } \mathbb{P}_{\theta^*}; \\ \bullet \ \sqrt{n} \left(\hat{\theta}_n^{MLE} - \theta^* \right) \xrightarrow{(d)} \mathcal{N} \left(0, I(\theta^*)^{-1} \right) \quad \text{ w.r.t. } \mathbb{P}_{\theta^*}. \end{array}$$

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.