
Statistics for Applications  

Chapter 10: Generalized Linear Models (GLMs)  
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Linear model  

A linear model assumes 

Y |X ∼ N (µ(X), σ2I), 

And 
IE(Y |X) = µ(X) = X⊤β, 
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Components of a linear model  

The two components (that we are going to relax) are 

1. Random component: the response variable Y |X is continuous 
and normally distributed with mean µ = µ(X) = IE(Y |X). 

2. Link: between the random and covariates 
(X(1),X(2)X = , · · · ,X(p))⊤: µ(X) = X⊤β. 
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Generalization  

A generalized linear model (GLM) generalizes normal linear 
regression models in the following directions. 

1. Random component: 

Y ∼ some exponential family distribution 

2. Link: between the random and covariates: 

g µ(X) = X⊤β 

where g called link function and µ = IE(Y |X). 
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Example 1: Disease Occuring Rate  

In the early stages of a disease epidemic, the rate at which new 
cases occur can often increase exponentially through time. Hence, 
if µi is the expected number of new cases on day ti, a model of the 
form 

µi = γ exp(δti) 

seems appropriate. 

◮	 Such a model can be turned into GLM form, by using a log 
link so that 

log(µi) = log(γ) + δti = β0 + β1ti. 

◮	 Since this is a count, the Poisson distribution (with expected 
value µi) is probably a reasonable distribution to try. 
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Example 2: Prey Capture Rate(1)  

The rate of capture of preys, yi, by a hunting animal, tends to 
increase with increasing density of prey, xi, but to eventually level 
off, when the predator is catching as much as it can cope with. 
A suitable model for this situation might be 

αxi 
µi = ,

h+ xi 

where α represents the maximum capture rate, and h represents 
the prey density at which the capture rate is half the maximum 
rate. 
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Example 2: Prey Capture Rate (2)  
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Example 2: Prey Capture Rate (3)  

◮	 Obviously this model is non-linear in its parameters, but, by 
using a reciprocal link, the right-hand side can be made linear 
in the parameters, 

1 1 h 1 1 
g(µi) = = + = β0 + β1 . 

µi α α xi xi 

◮	 The standard deviation of capture rate might be 
approximately proportional to the mean rate, suggesting the 
use of a Gamma distribution for the response. 
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Example 3: Kyphosis Data  

The Kyphosis data consist of measurements on 81 children 
following corrective spinal surgery. The binary response variable, 
Kyphosis, indicates the presence or absence of a postoperative 
deforming. The three covariates are, Age of the child in month, 
Number of the vertebrae involved in the operation, and the Start 
of the range of the vertebrae involved. 

◮ The response variable is binary so there is no choice: Y |X is 
Bernoulli with expected value µ(X) ∈ (0, 1). 

◮ We cannot write 
µ(X) = X⊤β 

because the right-hand side ranges through IR. 

◮ We need an invertible function f such that f(X⊤β) ∈ (0, 1) 

9/52 



GLM: motivation  

◮ clearly, normal LM is not appropriate for these examples; 

◮ need a more general regression framework to account for 
various types of response data 

◮ Exponential family distributions 

◮ develop methods for model fitting and inferences in this 
framework 

◮ Maximum Likelihood estimation. 

10/52 



Exponential Family  

A family of distribution {Pθ : θ ∈ Θ}, Θ ⊂ IRk is said to be a 
k-parameter exponential family on IRq, if there exist real valued 
functions: 

◮	 η1, η2, · · · , ηk and B of θ, 

◮	 T1, T2, · · · , Tk, and h of x ∈ IRq such that the density 
function (pmf or pdf) of Pθ can be written as 

k 

pθ(x) = exp[ ηi(θ)Ti(x)−B(θ)]h(x)
L 

i=1 
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Normal distribution example 
◮ Consider X ∼ N (µ, σ2), θ = (µ, σ2). The density is 

( 2 )µ 1 µ 1 
pθ(x) = exp x − x 2 − √ ,

σ2 2σ2 2σ2 σ 2π 

which forms a two-parameter exponential family with 

µ 1 2η1 = , η2 = − , T1(x) = x, T2(x) = x ,
σ2 2σ2 

2 √µ
B(θ) = + log(σ 2π), h(x) = 1. 

2σ2 

◮ When σ2 is known, it becomes a one-parameter exponential 
family on IR: 

2 
− 

x 
2 2σ2µ µ e 

η = , T (x) = x, B(θ) = , h(x) = √ . 
σ2 2σ2 σ 2π 
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Examples of discrete distributions  

The following distributions form discrete exponential families of 
distributions with pmf 

◮ Bernoulli(p): p x(1− p)1−x , x ∈ {0, 1} 

λx
 

◮ Poisson(λ): e −λ , x = 0, 1, . . . .
 
x! 
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Examples of Continuous distributions  

The following distributions form continuous exponential families of 
distributions with pdf: 

1 x a−1 −
◮ Gamma(a, b): x e b ;

Γ(a)ba 

◮ above: a: shape parameter, b: scale parameter 
◮ reparametrize: µ = ab: mean parameter 

( )a 
ax 1 a −a−1 x e . 

Γ(a) µ
µ 

βα 
−α−1 −β/x

◮ Inverse Gamma(α, β): x e . 
Γ(α) 
 

σ2 −σ2(x−µ)2 

2µ x2◮ Inverse Gaussian(µ, σ2): e . 
2πx3 

Others: Chi-square, Beta, Binomial, Negative binomial 
distributions. 
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Components of GLM  

1. Random component: 

Y ∼ some exponential family distribution 

2. Link: between the random and covariates: 

g µ(X) = X⊤β 

where g called link function and µ(X) = IE(Y |X). 
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One-parameter canonical exponential family  

◮ Canonical exponential family for k = 1, y ∈ IR 
(yθ − b(θ) )

fθ(y) = exp + c(y, φ)
φ 

for some known functions b(·) and c(·, ·) . 

◮	 If φ is known, this is a one-parameter exponential family with 
θ being the canonical parameter . 

◮	 If φ is unknown, this may/may not be a two-parameter 
exponential family. φ is called dispersion parameter. 

◮	 In this class, we always assume that φ is known. 
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Normal distribution example  

◮	 Consider the following Normal density function with known 
variance σ2 , 

1 −
(y−µ)2 

2fθ(y) = √ e 2σ


σ 2π
 
1	 2 2yµ− µ 1 y2= exp − + log(2πσ2) ,

σ2 2 σ2 

θ2 
◮	 Therefore θ = µ, φ = σ2, , b(θ) = 2 , and 

1	 y2 
c(y, φ) = − ( + log(2πφ)). 

2 φ 
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Other distributions  

Table 1: Exponential Family 

Normal Poisson Bernoulli 

Notation N (µ, σ2) P(µ) B(p) 
Range of y (−∞,∞) [0,−∞) {0, 1}

φ 1 1σ2 

θ2 θb(θ) 2 e log(1 + eθ) 

c(y, φ) −1 (y
2 
+ log(2πφ)) − log y! 12 φ 
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Likelihood  

Let ℓ(θ) = log fθ(Y ) denote the log-likelihood function. 
The mean IE(Y ) and the variance var(Y ) can be derived from the 
following identities 

◮ First identity 
∂ℓ 

IE( ) = 0,
∂θ

◮ Second identity 

∂2ℓ ∂ℓ 
IE( ) + IE( )2 = 0. 

∂θ2 ∂θ

Obtained from fθ(y)dy ≡ 1 . 
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Expected value  

Note that 
Y θ − b(θ 

ℓ(θ) = + c(Y ;φ),
φ 

Therefore 
∂ℓ Y − b ′ (θ) 

= 
∂θ φ 

It yields 
∂ℓ IE(Y )− b ′ (θ)) 

0 = IE( ) = ,
∂θ φ 

which leads to 
IE(Y ) = µ = b ′ (θ). 

20/52 



Variance  

On the other hand we have we have
 

∂2ℓ ∂ℓ b ′′ (θ) (Y − b ′ (θ))2 
+ ( )2 = − + 

∂θ2 ∂θ φ φ 

and from the previous result, 

Y − b ′ (θ) Y − IE(Y ) 
= 

φ φ 

Together, with the second identity, this yields 

b ′′ (θ) var(Y )
0 = − + ,

φ φ2 

which leads to 
var(Y ) = V (Y ) = b ′′ (θ)φ. 
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Example: Poisson distribution  

Example: Consider a Poisson likelihood, 

yµ
−µ y log µ−µ−log(y!)f(y) = e = e , 

y! 

Thus, 
θ = log µ, b(θ) = µ, c(y, φ) = − log(y!), 

φ = 1, 

θ µ = e , 

b(θ) = e θ , 

b ′′ (θ) θ = e = µ, 
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Link function  

◮ β is the parameter of interest, and needs to appear somehow 
in the likelihood function to use maximum likelihood. 

◮ A link function g relates the linear predictor X⊤β to the mean 
parameter µ, 

X⊤β = g(µ). 

◮ g is required to be monotone increasing and differentiable 

µ = g −1(X⊤β). 
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Examples of link functions  

◮ For LM, g(·) = identity. 

◮ Poisson data. Suppose Y |X ∼ Poisson(µ(X)). 

◮ µ(X) > 0; 
◮ log(µ(X)) = X⊤β; 
◮ In general, a link function for the count data should map 

(0,+∞) to IR. 
◮ The log link is a natural one. 

◮ Bernoulli/Binomial data. 
◮ 0 < µ < 1; 
◮ g should map (0, 1) to IR: 
◮ 3 choices: 

( )

µ(X) 
X⊤1. logit: log = β;

1−µ(X) 

2.	 probit: Φ−1(µ(X)) = X⊤β where Φ(·) is the normal cdf; 
X⊤3. complementary log-log: log(− log(1− µ(X))) = β 

◮ The logit link is the natural choice. 
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Examples of link functions for Bernoulli response (1)  
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Examples of link functions for Bernoulli response (2)  
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Canonical Link  

◮ The function g that links the mean µ to the canonical 
parameter θ is called Canonical Link: 

g(µ) = θ 

◮ Since µ = b ′ (θ), the canonical link is given by 

g(µ) = (b ′ )−1(µ) . 

◮ If φ > 0, the canonical link function is strictly increasing. 
Why?  
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Example: the Bernoulli distribution  

◮	 We can check that 

b(θ) = log(1 + e θ) 

◮	 Hence we solve 
( )

exp(θ)	 µ
b ′ (θ) = = µ ⇔ θ = log

1 + exp(θ)	 1− µ

◮	 The canonical link for the Bernoulli distribution is the logit 
link. 
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Other examples  

b(θ) g(µ) 

Normal 
Poisson 
Bernoulli 

Gamma 

θ2/2 
exp(θ) 

log(1 + eθ) 

− log(−θ) 

µ 
log µ 

log µ 
1−µ 

− 1 
µ 
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Model and notation  

◮	 Let (Xi, Yi) ∈ IRp × IR, i = 1, . . . , n be independent random 
pairs such that the conditional distribution of Yi given 
Xi = xi has density in the canonical exponential family: 

�yiθi − b(θi)
fθi(yi) = exp + c(yi, φ) . 

φ 

◮ Y = (Y1, . . . , Yn)
⊤ , X = (X1 

⊤ , . . . ,X⊤)⊤ 
n 

◮ Here the mean µi is related to the canonical parameter θi via 

µi = b ′ (θi) 

◮	 and µi depends linearly on the covariates through a link 
function g: 

X⊤ g(µi) = i β . 
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Back to β  

◮	 Given a link function g, note the following relationship 
between β and θ: 

θi	 = (b ′ )−1(µi) 

= (b ′ )−1(g −1(Xi 
⊤β)) ≡ h(Xi 

⊤β), 

where h is defined as 

−1h = (b ′ )−1 ◦ g = (g ◦ b ′ )−1 . 

◮ Remark: if g is the canonical link function, h is identity. 
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Log-likelihood  

◮	 The log-likelihood is given by 

L Yiθi − b(θi)
ℓn(β;Y,X) = 

φ 
i 

L Yih(X
⊤β)− b(h(X⊤β)) i i = 

φ 
i 

up to a constant term. 

◮	 Note that when we use the canonical link function, we obtain 
the simpler expression 

L YiX
⊤β − b(X⊤β)

ℓn(β, φ;Y,X) = i i 

φ 
i 
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Strict concavity  

◮	 The log-likelihood ℓ(θ) is strictly concave using the canonical 
function when φ > 0. Why? 

◮	 As a consequence the maximum likelihood estimator is unique. 

◮	 On the other hand, if another parameterization is used, the 
likelihood function may not be strictly concave leading to 
several local maxima. 
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Optimization Methods  

∗Given a function f(x) defined on X ⊂ IRm, find x such that 
f(x ∗) ≥ f(x) for all x ∈ X . 

We will describe the following three methods, 

◮ Newton-Raphson Method 

◮ Fisher-scoring Method 

◮ Iteratively Re-weighted Least Squares. 
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Gradient and Hessian  

◮ Suppose f : IRm → IR has two continuous derivatives. 
◮ Define the Gradient of f at point x0, ∇f = ∇f (x0), as 

(∇f ) = (∂f/∂x1, . . . , ∂f/∂xm)⊤ . 

◮	 Define the Hessian (matrix) of f at point x0, Hf = Hf (x0), 
as 

∂2f 
(Hf )ij = . 

∂xi∂xj 

◮ For smooth functions, the Hessian is symmetric. If f is strictly 
concave, then Hf (x) is negative definite. 

◮ The continuous function: 

x �→ Hf (x) 

is called Hessian map. 
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Quadratic approximation  

◮ Suppose f has a continuous Hessian map at x0. Then we can 
approximate f quadratically in a neighborhood of x0 using 

f(x) ≈ f(x0) +∇⊤(x0)(x − x0) + 
1
(x − x0)

⊤Hf (x0)(x − x0).f 2

◮ This leads to the following approximation to the gradient: 

∇f (x) ≈ ∇f (x0) +Hf (x0)(x − x0). 

∗ 
◮ If x is maximum, we have 

∇f (x 
∗ ) = 0 

◮ We can solve for it by plugging in x ∗, which gives us 

∗ x = x0 −Hf (x0)
−1∇f (x0). 
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Newton-Raphson method  

◮	 The Newton-Raphson method for multidimensional 
optimization uses such approximations sequentially 

◮	 We can define a sequence of iterations starting at an arbitrary 
value x0, and update using the rule, 

(k+1) x = x(k) −Hf (x
(k))−1∇f (x

(k)). 

◮	 The Newton-Raphson algorithm is globally convergent at 
quadratic rate whenever f is concave and has two continuous 
derivatives. 
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Fisher-scoring method (1)  

◮	 Newton-Raphson works for a deterministic case, which does 
not have to involve random data. 

◮	 Sometimes, calculation of the Hessian matrix is quite 
complicated (we will see an example) 

◮	 Goal: use directly the fact that we are minimizing the KL 
divergence 

[ ]

KL“ = ” − IE log-likelihood

◮	 Idea: replace the Hessian with its expected value. Recall that 

IEθ (Hℓn(θ)) = −I(θ) 

is the Fisher Information 
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Fisher-scoring method (2)  

◮	 The Fisher Information matrix is positive definite, and can 
serve as a stand-in for the Hessian in the Newton-Raphson 
algorithm, giving the update: 

θ(k+1) θ(k)	 (θ(k)).= + I(θ(k))−1∇ℓn

This is the Fisher-scoring algorithm. 

◮	 It has essentially the same convergence properties as 
Newton-Raphson, but it is often easier to compute I than 
Hℓn 

. 
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Example: Logistic Regression (1)  

◮	 Suppose Yi ∼ Bernoulli(pi), i = 1, . . . , n, are independent 
0/1 indicator responses, and Xi is a p× 1 vector of predictors 
for individual i. 

◮	 The log-likelihood is as follows: 

n 
L

( ( )) 
θiℓn(θ|Y,X) = Yiθi − log 1 + e . 

i=1 

◮	 Under the canonical link, 

( )

pi 
X⊤θi = log = i β. 1− pi
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Example: Logistic Regression (2) 
◮ Thus, we have 

n 
( (

YiXi 
⊤β − log

))  
.
 

L  
1 +
 e
 X

⊤ 

i βℓn(β|Y,X)
 =
 
i=1 

◮ The gradient is 

⊤ 

i
n X β 
L e∇ℓn 

(β) = YiXi − 
1 + ei=1 

◮ The Hessian is 

Xi .

⊤ 

iX β 

⊤ 

i
n X β 
L e

XiXi 
⊤ .Hℓn(β) = − 

β
)2 

i=1 
(

X1 + e
⊤ 

i

◮ As a result, the updating rule is 

β(k+1) = β(k) −Hℓn(β
(k))−1∇ℓn(β

(k)). 
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Example: Logistic Regression (3)  

◮	 The score function is a linear combination of the Xi, and the 
Hessian or Information matrix is a linear combination of 
XiXi 

⊤ . This is typical in exponential family regression models 
(i.e. GLM). 

◮ The Hessian is negative definite, so there is a unique local 
maximizer, which is also the global maximizer. 

◮	 Finally, note that that the Yi does not appear in Hℓn(β), 
which yields 

[ ]

Hℓn(β) = IE Hℓn(β) = −I(β) 

. 
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Iteratively Re-weighted Least Squares  

◮	 IRLS is an algorithm for fitting GLM obtained by 
Newton-Raphson/Fisher-scoring. 

◮	 Suppose Yi|Xi has a distribution from an exponential family 
with the following log-likelihood function, 

n 
L Yiθi − b(θi)

ℓ =	 + c(Yi, φ). 
φ 

i=1 

◮	 Observe that 

dµi ′′ 

µi = b ′ (θi), Xi 
⊤β = g(µi), = b (θi) ≡ Vi. 

dθi 

θi = (b ′ )−1 ◦ g −1(Xi 
⊤β) := h(Xi 

⊤β) 
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Chain rule  

◮	 According to the chain rule, we have 

n 
L∂ℓn ∂ℓi ∂θi 

= 
∂βj ∂θi ∂βji=1 
L Yi − µi j= h ′ (Xi 

⊤β)Xiφ 
i 

( ( )) 
L h ′ (X⊤β) 

= (Ỹi − µ̃i)WiX
j Wi ≡ i .i g ′(µi)φ i 

◮	 Where Ỹ = (g ′ (µ1)Y1, . . . g 
′ (µn)Yn)

⊤ and 
µ̃ = (g ′ (µ1)µ1, . . . g 

′ (µn)µn)
⊤ 
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Gradient  

◮ Define 
W = diag{W1, . . . ,Wn}, 

◮ Then, the gradient is 

∇ℓn 
(β) = X⊤W (Ỹ − µ̃) 
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Hessian  

◮ For the Hessian, we have 

∂2ℓ L Yi − µi
h ′′ (X⊤ j j= i β)Xi Xi∂βj∂βk φ 

i 
( )

L1 ∂µi j− h ′ (Xi 
⊤β)X

φ ∂βk
i 

i 

◮ Note that 

∂µi ∂b ′ (θi) ∂b ′ (h(Xi 
⊤β)) 

b ′′ (θi)h 
′ (X⊤ = = = i β)X

k 

∂βk ∂βk ∂βk
i 

It yields 

1 L [ ]2
b ′′ (θi)IE(Hℓn(β)) = − h ′ (Xi 

⊤β) XiXi 
⊤ 

φ 
i 
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Fisher information  
◮ Note that g−1(·) = b ′ ◦ h(·) yields 

h ′ (·) 1 
b ′′ ◦ h(·) · = 

g ′ ◦ g−1(·)
 

Recall that θi = h(Xi 
⊤β) and µi = g−1(Xi 

⊤β), we obtain
 

b ′′ (θi)h 
′ (X⊤ 

1
 
i β) = 

g ′(µi) 

◮ As a result 

L h ′ (X⊤β)iIE(Hℓn(β)) = − XiX
⊤ 

i g ′(µi)φ i 

◮ Therefore, 

( h ′ (X⊤ )

i β)I(β) = −IE(Hℓn(β)) = X⊤WX where W = diag
g ′(µi) 
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Fisher-scoring updates  

◮ According to Fisher-scoring, we can update an initial estimate 
β(k) to β(k+1) using
 

β(k+1) β(k) = + I(β(k))−1∇ℓn(β
(k)) , 

◮ which is equivalent to 

β(k+1) = β(k) + (X⊤WX)−1
X
⊤W (Ỹ − µ̃) 

= (X⊤WX)−1
X
⊤W (Ỹ − µ̃+ Xβ(k)) 
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Weighted least squares (1)  

Let us open a parenthesis to talk about Weighted Least Squares. 

◮	 Assume the linear model Y = Xβ + ε, where 
ε ∼ Nn(0,W

−1), where W−1 is a n × n diagonal matrix. 
When variances are different, the regression is said to be 
heteroskedastic. 

◮	 The maximum likelihood estimator is given by the solution to 

min (Y −Xβ)⊤W (Y − Xβ) 
β 

This is a Weighted Least Squares problem
 

◮ The solution is given by
 

(X⊤WX)−1
X
⊤W (X⊤WX)Y 

◮ Routinely implemented in statistical software. 
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Weighted least squares (2)  

Back to our problem. 
Recall that 

β(k+1) (X⊤WX)−1
X
⊤W ( ˜ µ+ Xβ(k))= Y − ˜

◮ This reminds us of Weighted Least Squares with 

1. W = W (β(k)) being the weight matrix, 
2. Ỹ − µ̃+ Xβ(k) being the response. 

So we can obtain β(k+1) using any system for WLS. 
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IRLS procedure (1) 
Iteratively Reweighed Least Squares is an iterative procedure to 
compute the MLE in GLMs using weighted least squares. 

to β(k+1) We show how to go from β(k) 

1. Fix β(k) and µ
(k) 

= g−1(X⊤β(k));i i 

2. Calculate the adjusted dependent responses 

(k) (k) (k)
Z = Xi 

⊤β(k) + g ′ (µ )(Yi − µ ); i i i 

3. Compute the weights W (k) = W (β(k)) 

h ′ (X⊤β(k))
W (k) i = diag 

g ′(µ
(k)

)φi 

4. Regress Z(k) on the design matrix X with weight W (k) to 
derive a new estimate β(k+1); 

We can repeat this procedure until convergence. 
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IRLS procedure (2)  

◮	 For this procedure, we only need to know X, Y, the link 
function g(·) and the variance function V (µ) = b 

′′ 

(θ). 
(0) 

◮ A possible starting value is to let µ = Y. 

◮ If the canonical link is used, then Fisher scoring is the same as 
Newton-Raphson. 

IE (Hℓn) = Hℓn 
. 

There is no random component (Y) in the Hessian matrix. 
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