Recall the definition of VC-dimension. Consider some examples:

- $\mathcal{C}=\{(-\infty, a)$ and $(a, \infty): a \in \mathbb{R}\} . V C(\mathcal{C})=2$.
- $\mathcal{C}=\{(a, b) \cup(c, d)\} . V C(\mathcal{C})=4$.
- $f_{1}, \ldots, f_{d}: \mathcal{X} \rightarrow \mathbb{R}, \mathcal{C}=\left\{\left\{x: \sum_{k=1}^{d} \alpha_{k} f_{k}(x)>0\right\}: \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}\right\}$

Theorem 9.1. $V C(\mathcal{C})$ in the last example above is at most d.
Proof. Observation: For any $\left\{x_{1}, \ldots, x_{d+1}\right\}$ if we cannot shatter $\left\{x_{1}, \ldots, x_{d+1}\right\} \longleftrightarrow \exists I \subseteq\{1 \ldots d+1\}$ s.t. we cannot pick out $\left\{x_{i}, i \in I\right\}$. If we can pick out $\left\{x_{i}, i \in I\right\}$, then for some $C \in \mathcal{C}$ there are $\alpha_{1}, \ldots, \alpha_{d}$ s.t. $\sum_{k=1}^{d} \alpha_{k} f_{k}(x)>0$ for $i \in I$ and $\sum_{k=1}^{d} \alpha_{k} f_{k}(x) \leq 0$ for $i \notin I$.
Denote

$$
\left(\sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{1}\right), \ldots, \sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{d+1}\right)\right)=F(\alpha) \in \mathbb{R}^{d+1}
$$

By linearity,

$$
F(\alpha)=\sum_{k=1}^{d} \alpha_{k}\left(f_{k}\left(x_{1}\right), \ldots, f\left(x_{d+1}\right)\right)=\sum_{k=1}^{d} \alpha_{k} F_{k} \subseteq H \subset \mathbb{R}^{d+1}
$$

and H is a d-dim subspace. Hence, $\exists \phi \neq 0, \phi \cdot h=0, \forall h \in H(\phi$ orthogonal to $H)$. Let $I=\left\{i: \phi_{i}>0\right\}$, where $\phi=\left(\phi_{1}, \ldots, \phi_{d+1}\right)$. If $I=\emptyset$ then take $-\phi$ instead of ϕ so that ϕ has positive coordinates.
Claim: We cannot pick out $\left\{x_{i}, i \in I\right\}$. Suppose we can: then $\exists \alpha_{1}, \ldots, \alpha_{d}$ s.t. $\sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{i}\right)>0$ for $i \in I$ and $\sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{i}\right) \leq 0$ for $i \notin I$. But $\phi \cdot F(\alpha)=0$ and so

$$
\phi_{1} \sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{1}\right)+\ldots+\phi_{d+1} \sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{d+1}\right)=0
$$

Hence,

$$
\sum_{i \in I} \underbrace{\phi_{i}\left(\sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{i}\right)\right)}_{>0}=\sum_{i \notin I} \underbrace{\left(-\phi_{i}\right)}_{\geq 0} \underbrace{\left(\sum_{k=1}^{d} \alpha_{k} f_{k}\left(x_{i}\right)\right)}_{\leq 0} .
$$

Contradiction.

- Half-spaces in $\mathbb{R}^{d}:\left\{\left\{\alpha_{1} x_{1}+\ldots+\alpha_{d} x_{d}+\alpha_{d+1}>0\right\}: \alpha_{1}, \ldots, \alpha_{d+1} \in \mathbb{R}\right\}$.

By setting $f_{1}=x_{1}, \ldots, f_{d}=x_{d}, f_{d+1}=1$, we can use the previous result and therefore $\operatorname{VC}(\mathcal{C}) \leq d+1$ for half-spaces.
Reminder: $\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=\operatorname{card}\left\{\left\{x_{1}, \ldots, x_{n}\right\} \cap C: C \in \mathcal{C}\right\}$.

Lemma 9.1. If \mathcal{C} and \mathcal{D} are $V C$ classes of sets,
(1) $\mathcal{C}=\left\{C^{c}: C \in \mathcal{C}\right\}$ is $V C$
(2) $\mathcal{C} \cap \mathcal{D}=\{C \cap D: C \in \mathcal{C}, D \in \mathcal{D}\}$ is $V C$
(3) $\mathcal{C} \cup \mathcal{D}=\{C \cup D: C \in \mathcal{C}, D \in \mathcal{D}\}$ is $V C$
(1) obvious - we can shatter x_{1}, \ldots, x_{n} by \mathcal{C} iff we can do the same by \mathcal{C}^{c}.
(a) By Sauer's Lemma,

$$
\begin{aligned}
\triangle_{n}\left(\mathcal{C} \cap \mathcal{D}, x_{1}, \ldots, x_{n}\right) & \leq \triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \triangle_{n}\left(\mathcal{C} \cap \mathcal{D}, x_{1}, \ldots, x_{n}\right) \\
& \leq\left(\frac{e n}{V_{\mathcal{C}}}\right)_{\mathcal{C}}^{V}\left(\frac{e n}{V_{\mathcal{D}}}\right)_{\mathcal{D}}^{V} \leq 2^{n}
\end{aligned}
$$

for large enough n.
(b) $(C \cup D)=\left(C^{c} \cap D^{c}\right)^{c}$, and the result follows from (1) and (2).

Example 9.1. Decision trees on \mathbb{R}^{d} with linear decision rules: $\left\{C_{1} \cap \ldots C_{\ell}\right\}$ is VC and $\bigcup_{\text {leaves }}\left\{C_{1} \cap \ldots C_{\ell}\right\}$ is VC .
Neural networks with depth ℓ and binary leaves.

