Assume $f \in \mathcal{F}=\{f: \mathcal{X} \mapsto \mathbb{R}\}$ and x_{1}, \ldots, x_{n} are i.i.d. Denote $\mathbb{P}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$ and $\mathbb{P} f=\int f d P=\mathbb{E} f$.
We are interested in bounding $\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\mathbb{E} f$.
Worst-case scenario is the value

$$
\sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right|
$$

The Glivenko-Cantelli property $G C(\mathcal{F}, P)$ says that

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

- Algorithm can output any $f \in \mathcal{F}$
- Objective is determined by $\mathbb{P}_{n} f$ (on the data)
- Goal is $\mathbb{P} f$
- Distribution P is unknown

The most pessimistic requirement is

$$
\sup _{P} \mathbb{E} \sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right| \rightarrow 0
$$

which we denote

$$
\text { uniform } G C(\mathcal{F})
$$

VC classes of sets

Let $\mathcal{C}=\{C \subseteq X\}, f_{C}(x)=I(x \in C)$. The most pessimistic value is

$$
\sup _{P} \mathbb{E} \sup _{C \in \mathcal{C}}\left|\mathbb{P}_{n}(C)-\mathbb{P}(C)\right| \rightarrow 0 .
$$

For any sample $\left\{x_{1}, \ldots, x_{n}\right\}$, we can look at the ways that \mathcal{C} intersects with the sample:

$$
\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}
$$

Let

$$
\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=\operatorname{card}\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}
$$

the number of different subsets picked out by $C \in \mathcal{C}$. Note that this number is at most 2^{n}.
Denote

$$
\triangle_{n}(\mathcal{C})=\sup _{\left\{x_{1}, \ldots, x_{n}\right\}} \triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq 2^{n}
$$

We will see that for some classes, $\triangle_{n}(\mathcal{C})=2^{n}$ for $n \leq V$ and $\triangle_{n}(\mathcal{C})<2^{n}$ for $n>V$ for some constant V.
What if $\triangle_{n}(\mathcal{C})=2^{n}$ for all $n \geq 1$? That means we can always find $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $C \in \mathcal{C}$ can pick out any subset of it: " \mathcal{C} shatters $\left\{x_{1}, \ldots, x_{n}\right\}$ ". In some sense, we do not learn anything.

Definition 8.1. If $V<\infty$, then \mathcal{C} is called a VC class. V is called VC dimension of \mathcal{C}.

Sauer's lemma states the following:

Lemma 8.2.

$$
\forall\left\{x_{1}, \ldots, x_{n}\right\}, \quad \triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq\left(\frac{e n}{V}\right)^{V} \quad \text { for } n \geq V
$$

Hence, \mathcal{C} will pick out only very few subsets out of 2^{n} (because $\left(\frac{e n}{V}\right)^{V} \sim n^{V}$).

Lemma 8.3. The number $\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)$ of subsets picked out by \mathcal{C} is bounded by the number of subsets shattered by \mathcal{C}.

Proof. Without loss of generality, we restrict \mathcal{C} to $\mathcal{C}:=\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}$, and we have $\operatorname{card}(\mathcal{C})=$ $\Delta_{n}\left(\mathcal{C}, x_{1}, \cdots, x_{n}\right)$.

We will say that \mathcal{C} is hereditary if and only if whenever $B \subseteq C \in \mathcal{C}, B \in \mathcal{C}$. If \mathcal{C} is hereditary, then every $C \in \mathcal{C}$ is shattered by \mathcal{C}, and the lemma is obvious. Otherwise, we will transform $\mathcal{C} \rightarrow \mathcal{C}^{\prime}$, hereditary, without changing the cardinality of \mathcal{C} and without increasing the number of shattered subsets.
Define the operators T_{i} for $i=1, \cdots, n$ as the following,

$$
\begin{aligned}
& T_{i}(C)= \begin{cases}C-\left\{x_{i}\right\} & \text { if } C-\left\{x_{i}\right\} \text { is not in } \mathcal{C} \\
C & \text { otherwise }\end{cases} \\
& T_{i}(\mathcal{C})=\left\{T_{i}(C): C \in \mathcal{C}\right\}
\end{aligned}
$$

It follows that card $T_{i}(\mathcal{C})=$ card \mathcal{C}. Moreover, every $A \subseteq\left\{x_{1}, \cdots, x_{n}\right\}$ that is shattered by $T_{i}(\mathcal{C})$ is also shattered by \mathcal{C}. If $x_{i} \notin A$, then $\forall C \in \mathcal{C}, A \bigcap C=A \bigcap T_{i}(C)$, thus \mathcal{C} and $T_{i}(\mathcal{C})$ both or neither shatter A. On the other hand, if $x_{i} \in A$ and A is shattered by $T_{i}(\mathcal{C})$, then $\forall B \subseteq A, \exists C \in \mathcal{C}$, such that $B \bigcap\left\{x_{i}\right\}=A \bigcap T_{i}(C)$. This means that $x_{i} \in T_{i}(C)$, and that $C \backslash\left\{x_{i}\right\} \in \mathcal{C}$. Thus both $B \bigcup\left\{x_{i}\right\}$ and $B \backslash\left\{x_{i}\right\}$ are picked out by \mathcal{C}. Since either $B=B \bigcup\left\{x_{i}\right\}$ or $B=B \backslash\left\{x_{i}\right\}, B$ is picked out by \mathcal{C}. Thus A is shattered by \mathcal{C}.
Apply the operator $T=T_{1} \circ \ldots \circ T_{n}$ until $T^{k+1}(\mathcal{C})=T^{k}(\mathcal{C})$. This will happen for at most $\sum_{C \in \mathcal{C}} \operatorname{card}(C)$ times, since $\sum_{C \in \mathcal{C}} \operatorname{card}\left(T_{i}(C)\right)<\sum_{C \in \mathcal{C}} \operatorname{card}(C)$ if $T_{i}(\mathcal{C}) \neq \mathcal{C}$. The resulting collection \mathcal{C}^{\prime} is hereditary. This proves the lemma.

Sauer's lemma is proved, since for arbitrary $\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\begin{aligned}
\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) & \leq \text { card }\left(\text { shattered subsets of }\left\{x_{1}, \ldots, x_{n}\right\}\right) \\
& \leq \text { card }(\text { subsets of size } \leq V) \\
& =\sum_{i=0}^{V}\binom{n}{i} \\
& \leq\left(\frac{e n}{V}\right)^{V}
\end{aligned}
$$

