As in the previous lecture, consider the classification setting. Let $\mathcal{X}=\mathbb{R}^{d}, \mathcal{Y}=\{+1,-1\}$, and

$$
\mathcal{H}=\left\{\psi x+b, \psi \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}
$$

where $|\psi|=1$.
We would like to maximize over the choice of hyperplanes the minimal distance from the data to the hyperplane:

$$
\max _{H} \min _{i} d\left(x_{i}, H\right)
$$

where

$$
d\left(x_{i}, H\right)=y_{i}\left(\psi x_{i}+b\right)
$$

Hence, the problem is formulated as maximizing the margin:

$$
\max _{\psi, b} \underbrace{\min _{i} y_{i}\left(\psi x_{i}+b\right)}_{m \text { (margin) }} .
$$

Rewriting,

$$
y_{i}\left(\psi^{\prime} x_{i}+b^{\prime}\right)=\frac{y_{i}\left(\psi x_{i}+b\right)}{m} \geq 1
$$

$\psi^{\prime}=\psi / m, b^{\prime}=b / m,\left|\psi^{\prime}\right|=|\psi| / m=1 / m$. Maximizing m is therefore minimizing $\left|\psi^{\prime}\right|$. Rename $\psi^{\prime} \rightarrow \psi$, we have the following formulation:

$$
\min |\psi| \quad \text { such that } \quad y_{i}\left(\psi x_{i}+b\right) \geq 1
$$

Equivalently,

$$
\min \frac{1}{2} \psi \cdot \psi \quad \text { such that } \quad y_{i}\left(\psi x_{i}+b\right) \geq 1
$$

Introducing Lagrange multipliers:

$$
\phi=\frac{1}{2} \psi \cdot \psi-\sum \alpha_{i}\left(y_{i}\left(\psi x_{i}+b\right)-1\right), \alpha_{i} \geq 0
$$

Take derivatives:

$$
\begin{gathered}
\frac{\partial \phi}{\partial \psi}=\psi-\sum \alpha_{i} y_{i} x_{i}=0 \\
\frac{\partial \phi}{\partial b}=-\sum \alpha_{i} y_{i}=0
\end{gathered}
$$

Hence,

$$
\psi=\sum \alpha_{i} y_{i} x_{i}
$$

and

$$
\sum \alpha_{i} y_{i}=0
$$

Substituting these into ϕ,

$$
\begin{aligned}
\phi & =\frac{1}{2}\left(\sum \alpha_{i} y_{i} x_{i}\right)^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} x_{i}+b\right)-1\right) \\
& =\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}-\sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}-b \sum \alpha_{i} y_{i}+\sum \alpha_{i} \\
& =\sum \alpha_{i}-\frac{1}{2} \sum \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}
\end{aligned}
$$

The above expression has to be maximized this with respect to $\alpha_{i}, \alpha_{i} \geq 0$, which is a Quadratic Programming problem.
Hence, we have $\psi=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$.
Kuhn-Tucker condition:

$$
\alpha_{i} \neq 0 \Leftrightarrow y_{i}\left(\psi x_{i}+b\right)-1=0 .
$$

Throwing out non-support vectors x_{i} does not affect hyperplane $\Rightarrow \alpha_{i}=0$.
The mapping ϕ is a feature mapping:

$$
x \in \mathbb{R}^{d} \longrightarrow \phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \ldots\right) \in \mathcal{X}^{\prime}
$$

where \mathcal{X}^{\prime} is called feature space.
Support Vector Machines find optimal separating hyperplane in a very high-dimensional space. Let $K\left(x_{i}, x_{j}\right)=$ $\sum_{k=1}^{\infty} \phi_{k}\left(x_{i}\right) \phi_{k}\left(x_{j}\right)$ be a scalar product in \mathcal{X}^{\prime}. Notice that we don't need to know mapping $x \rightarrow \phi(x)$. We only need to know $K\left(x_{i}, x_{j}\right)=\sum_{k=1}^{\infty} \phi_{k}\left(x_{i}\right) \phi_{k}\left(x_{j}\right)$, a symmetric positive definite kernel.

Examples:
(1) Polynomial: $K\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}+1\right)^{\ell}, \ell \geq 1$.
(2) Radial Basis: $K\left(x_{1}, x_{2}\right)=e^{-\gamma\left|x_{1}-x_{2}\right|^{2}}$.
(3) Neural (two-layer): $K\left(x_{1}, x_{2}\right)=\frac{1}{1+e^{\alpha_{1} x_{2}+\beta}}$ for some α, β (for some it's not positive definite).

Once α_{i} are known, the decision function becomes

$$
\operatorname{sign}\left(\sum \alpha_{i} y_{i} x_{x} \cdot x+b\right)=\operatorname{sign}\left(\sum \alpha_{i} y_{i} K\left(x_{i}, x\right)+b\right)
$$

