In this lecture, we give another example of margin-sparsity bound involved with mixture-of-experts type of models. Let \mathcal{H} be a set of functions $h_{i}: \mathcal{X} \rightarrow[-1,+1]$ with finite VC dimension. Let C_{1}, \cdots, C_{m} be partitions of \mathcal{H} into m clusters $\mathcal{H}=\bigcup_{i=1}^{m} C_{i}$. The elements in the convex hull conv \mathcal{H} takes the form $f=\sum_{i=1}^{T} \lambda_{i} h_{i}=\sum_{c \in\left\{C_{1}, \cdots, C_{m}\right\}} \alpha_{c} \sum_{h \in c} \lambda_{h}^{c} \cdot h$, where $T \gg m, \sum_{i} \lambda_{i}=1, \alpha_{c}=\sum_{h \in c} \lambda_{h}$, and $\lambda_{h}^{c}=\lambda_{h} / \alpha_{c}$ for $h \in c$. We can approximate f by g as follows. For each cluster c, let $\left\{Y_{k}^{c}\right\}_{k=1, \ldots, N}$ be random variables such that $\forall h \in c \subset \mathcal{H}$, we have $\mathbb{P}\left(Y_{k}^{c}=h\right)=\lambda_{h}^{c}$. Then $\mathbb{E} Y_{k}^{c}=\sum_{h \in c} \lambda_{h}^{c} \cdot h$. Let $Z_{k}=\sum_{c} \alpha_{c} Y_{k}^{c}$ and $g=\sum_{c} \alpha_{c} \frac{1}{N} \sum_{k=1}^{N} Y_{k}^{c}=\frac{1}{N} \sum_{k=1}^{N} Z_{k}$. Then $\mathbb{E} Z_{k}=\mathbb{E} g=f$. We define $\sigma_{c}^{2} \triangleq \operatorname{var}\left(Z_{k}\right)=\sum_{c} \alpha_{c}^{2} \operatorname{var}\left(Y_{k}^{c}\right)$, where $\operatorname{var}\left(Y_{k}^{c}\right)=\left\|Y_{k}^{c}-\mathbb{E} Y_{k}^{c}\right\|^{2}=\sum_{h \in c} \lambda_{h}^{c}\left(h-\mathbb{E} Y_{h}^{c}\right)^{2}$. (If we define $\left\{Y_{k}\right\}_{k=1, \ldots, N}$ be random variables such that $\forall h \in \mathcal{H}, \mathbb{P}\left(Y_{k}=h\right)=\lambda_{h}$, and define $g=\frac{1}{N} \sum_{k=1}^{N} Y_{k}$, we might get much larger $\left.\operatorname{var}\left(Y_{k}\right)\right)$.

Recall that a classifier takes the form $y=\operatorname{sign}(f(x))$ and a classification error corresponds to $y f(x)<0$. We can bound the error by

$$
\begin{equation*}
\mathbb{P}(y f(x)<0) \leq \mathbb{P}(y g \leq \delta)+\mathbb{P}\left(\sigma_{c}^{2}>r\right)+\mathbb{P}\left(y g>\delta \mid y f(x) \leq 0, \sigma_{c}^{2}<r\right) . \tag{24.1}
\end{equation*}
$$

The third term on the right side of inequality 24.1 can be bounded in the following way,

$$
\begin{align*}
\mathbb{P}\left(y g>\delta \mid y f(x) \leq 0, \sigma_{c}^{2}<r\right) & =\mathbb{P}\left(\left.\frac{1}{N} \sum_{k=1}^{N}\left(y Z_{k}-\mathbb{E} y Z_{k}\right)>\delta-y f(x) \right\rvert\, y f(x) \leq 0, \sigma_{c}^{2}<r\right) \\
& \leq \mathbb{P}\left(\left.\frac{1}{N} \sum_{k=1}^{N}\left(y Z_{k}-\mathbb{E} y Z_{k}\right)>\delta \right\rvert\, y f(x) \leq 0, \sigma_{c}^{2}<r\right) \\
& \leq \exp \left(-\frac{N^{2} \delta^{2}}{2 N \sigma_{c}^{2}+\frac{2}{3} N \delta \cdot 2}\right), \text { Bernstein's inequality } \\
& \leq \exp \left(-\min \left(\frac{N^{2} \delta^{2}}{4 N \sigma_{c}^{2}}, \frac{N^{2} \delta^{2}}{\frac{8}{3} N \delta}\right)\right) \\
& \leq \exp \left(-\frac{N \delta^{2}}{4 r}\right), \text { for } r \text { small enough } \\
& \leq \frac{1}{n} . \tag{24.2}
\end{align*}
$$

As a result, $\forall N \geq \frac{4 \cdot r}{\delta^{2}} \log n$, inequality 24.2 is satisfied.
To bound the first term on the right side of inequality 24.1, we note that $\mathbb{E}_{Y_{1}, \cdots, Y_{N}} \mathbb{P}(y g \leq \delta) \leq \mathbb{E}_{Y_{1}, \cdots, Y_{N}} \mathbb{E} \phi_{\delta}(y g)$ and $\mathbb{E}_{n} \phi_{\delta}(y g) \leq \mathbb{P}_{n}(y g \leq 2 \delta)$ for some ϕ_{δ} :

Any realization of $g=\sum_{k=1}^{N_{m}} Z_{k}$, where N_{m} depends on the number of clusters $\left(C_{1}, \cdots, C_{m}\right)$, is a linear combination of $h \in \mathcal{H}$, and $g \in \operatorname{conv}_{N_{m}} \mathcal{H}$. According to lemma 20.2,

$$
\left(\mathbb{E} \phi_{\delta}(y g)-\mathbb{E}_{n} \phi_{\delta}(y g)\right) / \sqrt{\mathbb{E} \phi_{\delta}(y g)} \leq K\left(\sqrt{V N_{m} \log \frac{n}{\delta} / n}+\sqrt{u / n}\right)
$$

with probability at least $1-e^{-u}$. Using a technique developed earlier in this course, and taking the union bound over all m, δ, we get, with probability at least $1-K e^{-u}$,

$$
\mathbb{P}(y g \leq \delta) \leq K \inf _{m, \delta}\left(\mathbb{P}_{n}(y g \leq 2 \delta)+\frac{V \cdot N_{m}}{n} \log \frac{n}{\delta}+\frac{u}{n}\right)
$$

(Since $\mathbb{E P}_{n}(y g \leq 2 \delta) \leq \mathbb{E} \mathbb{P}_{n}(y f(x) \leq 3 \delta)+\mathbb{E} \mathbb{P}_{n}\left(\sigma_{c}^{2} \geq r\right)+\frac{1}{n}$ with appropriate choice of N, based on the same reasoning as inequality 24.1 , we can also control $\mathbb{P}_{n}(y g \leq 2 \delta)$ by $\mathbb{P}_{n}(y f \leq 3 \delta)$ and $\mathbb{P}_{n}\left(\sigma_{c}^{2} \geq r\right)$ probabilistically).
To bound the second term on the right side of inequality 24.1 , we approximate σ_{c}^{2} by $\sigma_{N}^{2}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{2}\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{2}$ where $Z_{k}^{(1)}$ and $Z_{k}^{(2)}$ are independent copies of Z_{k}. We have

$$
\begin{aligned}
\mathbb{E}_{Y_{1, \ldots, N}^{(1,2)}} \sigma_{N}^{2}= & \sigma_{c}^{2} \\
\operatorname{var}_{Y_{1, \ldots, N}^{(1,2)}} \frac{1}{2}\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{2} & =\frac{1}{4} \operatorname{var}\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{2} \\
\leq & \frac{1}{4} \mathbb{E}\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{4} \\
& \left(-1 \leq Z_{k}^{(1)}, Z_{k}^{(2)} \leq 1, \text { and }\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{2} \leq 4\right) \\
\leq & \mathbb{E}\left(Z_{k}^{(1)}-Z_{k}^{(2)}\right)^{2} \\
= & 2 \sigma_{c}^{2} \\
\leq & 2 \cdot \sigma_{c}^{2} .
\end{aligned}
$$

We start with

$$
\begin{aligned}
\mathbb{P}_{Y_{1, \ldots, N}}\left(\sigma_{c}^{2} \geq 4 r\right) & \leq \mathbb{P}_{Y_{1, \ldots, N}^{(1,2)}}\left(\sigma_{N}^{2} \geq 3 r\right)+\mathbb{P}_{Y_{1, \ldots, N}^{(1,2)}}\left(\sigma_{c}^{2} \geq 4 r \mid \sigma_{N}^{2} \leq 3 r\right) \\
& \leq \mathbb{E}_{Y_{1, \ldots, N}^{(1,2)}} \phi_{r}\left(\sigma_{N}^{2} \geq 3 r\right)+\frac{1}{n}
\end{aligned}
$$

with appropriate choice of N, following the same line of reasoning as in inequality 24.1. We note that $\mathbb{P}_{Y_{1}, \cdots, Y_{N}}\left(\sigma_{N}^{2} \geq 3 r\right) \leq \mathbb{E}_{Y_{1}, \cdots, Y_{N}} \phi_{r}\left(\sigma_{N}^{2}\right)$, and $\mathbb{E}_{n} \phi_{\delta}\left(\sigma_{N}^{2}\right) \leq \mathbb{P}_{n}\left(\sigma_{N}^{2} \geq 2 r\right)$ for some ϕ_{δ}.

Since

$$
\sigma_{N}^{2} \in\left\{\frac{1}{2 N} \sum_{k=1}^{N}\left(\sum_{c} \alpha_{c}\left(h_{k, c}^{(1)}-h_{k, c}^{(2)}\right)\right)^{2}: h_{k, c}^{(1)}, h_{k, c}^{(2)} \in \mathcal{H}\right\} \subset \operatorname{conv}_{N_{m}}\left\{h_{i} \cdot h_{j}: h_{i}, h_{j} \in \mathcal{H}\right\}
$$

and $\log D\left(\left\{h_{i} \cdot h_{j}: h_{i}, h_{j} \in \mathcal{H}\right\}, \epsilon\right) \leq K V \log \frac{2}{\epsilon}$ by the assumption of our problem, we have $\log D\left(\operatorname{conv}_{N_{m}}\left\{h_{i}\right.\right.$. $\left.\left.h_{j}: h_{i}, h_{j} \in \mathcal{H}\right\}, \epsilon\right) \leq K V \cdot N_{m} \cdot \log \frac{2}{\epsilon}$ by the VC inequality, and

$$
\left(\mathbb{E} \phi_{r}\left(\sigma_{N}^{2}\right)-\mathbb{E}_{n} \phi_{r}\left(\sigma_{N}^{2}\right)\right) / \sqrt{\mathbb{E} \phi_{r}\left(\sigma_{N}^{2}\right)} \leq K\left(\sqrt{V \cdot N_{m} \log \frac{n}{r} / n}+\sqrt{u / n}\right)
$$

with probability at least $1-e^{-u}$. Using a technique developed earlier in this course, and taking the union bound over all m, δ, r, with probability at least $1-K e^{-u}$,

$$
\mathbb{P}\left(\sigma_{c}^{2} \geq 4 r\right) \leq K \inf _{m, \delta, r}\left(\mathbb{P}_{n}\left(\sigma_{N}^{2} \geq 2 r\right)+\frac{1}{n}+\frac{V \cdot N_{m}}{n} \log \frac{n}{\delta}+\frac{u}{n}\right)
$$

As a result, with probability at least $1-K e^{-u}$, we have

$$
\mathbb{P}(y f(x) \leq 0) \leq K \cdot \inf _{r, \delta, m}\left(\mathbb{P}_{n}(y g \leq 2 \cdot \delta)+\mathbb{P}_{n}\left(\sigma_{N}^{2} \geq r\right)+\frac{V \cdot \min \left(r_{m} / \delta^{2}, N_{m}\right)}{n} \log \frac{n}{\delta} \log n+\frac{u}{n}\right)
$$

for all $f \in \operatorname{conv} \mathcal{H}$.

