In this lecture, we show that although the VC-hull classes might be considerably larger than the VC-classes, they are small enough to have finite uniform entropy integral.

Theorem 18.1. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measurable space, $\mathcal{F} \subset \{f | f : \mathcal{X} \to \mathbb{R}\}$ be a class of measurable functions with measurable square integrable envelope F (i.e., $\forall x \in \mathcal{X}, \forall f \in \mathcal{F}, |f(x)| < F(x)$, and $||F||_2 = (\int F^2 d\mu)^{1/2} < \infty$), and the ϵ -net of \mathcal{F} satisfies $N(\mathcal{F}, \epsilon ||F||_2, ||\cdot||) \leq C(\frac{1}{\epsilon})^V$ for $0 < \epsilon < 1$. Then there exists a constant K that depends only on C and V such that $\log N(\operatorname{conv}\mathcal{F}, \epsilon ||F||_2, ||\cdot||) \leq K(\frac{1}{\epsilon})^{\frac{2\cdot V}{V+2}}$.

Proof. Let $N(\mathcal{F}, \epsilon \|F\|_2, \|\cdot\|_2) \leq C\left(\frac{1}{\epsilon}\right)^V \stackrel{\triangle}{=} n$. Then $\epsilon = C^{1/v} n^{-1/V}$, and $\epsilon \|F\|_2 = C^{1/V} \|F\|_2 \cdot n^{-1/V}$. Let $L = C^{1/V} \|F\|_2$. Then $N(\mathcal{F}, Ln^{-1/V}, \|\cdot\|_2) \leq n$ (i.e., the $L \cdot n^{-1/V}$ -net of \mathcal{F} contains at most n elements). Construct $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots$ such that each \mathcal{F}_n is a $L \cdot n^{-1/V}$ -net, and contains at most n elements. Let $W = \frac{1}{2} + \frac{1}{V}$. We proceed to show that there exists constants C_k and D_k that depend only on C and V and are upper bounded ($\sup_k C_k \lor D_k < \infty$), such that

(18.1)
$$\log N(\operatorname{conv}\mathcal{F}_{n \cdot k^q}, C_k L \cdot n^{-W}, \|\cdot\|_2) \leq D_k \cdot n^{-W}$$

for $n, k \ge 1$, and $q \ge 3 + V$. This implies the theorem, since if we let $k \to \infty$, we have $\log N(\operatorname{conv}\mathcal{F}, C_{\infty}L \cdot n^{-W}, \|\cdot\|_2) \le D_{\infty} \cdot n$. Let $\epsilon = C_{\infty}C^{1/V}n^{-W}$, and $K = D_{\infty}C_{\infty}^{\frac{2\cdot V}{V+2}}C^{\frac{2}{V+2}}$, we get $C_{\infty}L \cdot n^{-W} = C_{\infty}C^{1/V}\|F\|_2 n^{-W} = \epsilon \|F\|_2$, $n = \left(\frac{C_{\infty}C^{1/V}}{\epsilon}\right)^{1/W}$ and $\log N(\operatorname{conv}\mathcal{F}, \epsilon \|F\|_2, \|\cdot\|_2) \le K \cdot \left(\frac{1}{\epsilon}\right)^{\frac{2\cdot V}{V+2}}$. Inequality 18.1 will proved in two steps: (1)

(18.2)
$$\log N(\operatorname{conv}\mathcal{F}_n, C_1L \cdot n^{-W}, \|\cdot\|_2) \leq D_1 \cdot n^{-W}$$

by induction on n, using Kolmogorov's chaining technique, and (2) for fixed n,

(18.3)
$$\log N(\operatorname{conv}\mathcal{F}_{n \cdot k^q}, C_k L \cdot n^{-W}, \|\cdot\|_2) \leq D_k \cdot n^{-W}$$

by induction on k, using the results of (1) and Kolmogorov's chaining technique.

For any fixed n_0 and any $n \leq n_0$, we can choose large enough C_1 such that $C_1 L n_0^{-W} \geq ||F||_2$. Thus $N(\operatorname{conv}\mathcal{F}_n, C_1 L \cdot n^{-W}, ||\cdot||_2) = 1$ and 18.2 holds trivially. For general n, fix m = n/d for large enough d > 1. For any $f \in \mathcal{F}_n$, there exists a projection $\pi_m f \in \mathcal{F}_m$ such that $||f - \pi_m f|| \leq C^{\frac{1}{V}} m^{-\frac{1}{V}} ||F|| = L m^{-\frac{1}{V}}$ by definition of \mathcal{F}_m . Since $\sum_{f \in \mathcal{F}_n} \lambda_f \cdot f = \sum_{f \in \mathcal{F}_m} \mu_f \cdot f + \sum_{f \in \mathcal{F}_n} \lambda_f \cdot (f - \pi_m f)$, we have $\operatorname{conv}\mathcal{F}_n \subset \operatorname{conv}\mathcal{F}_m + \operatorname{conv}\mathcal{G}_n$, and the number of elements $|\mathcal{G}_n| \leq |\mathcal{F}_n| \leq n$, where $\mathcal{G}_n = \{f - \pi_m f : f \in \mathcal{F}_n\}$. We will find $\frac{1}{2}C_1Ln^{-\frac{1}{W}}$ -nets for both \mathcal{F}_m and \mathcal{G}_n , and bound the number of elements for them to finish to induction step. We need the following lemma to bound the number of elements for the $\frac{1}{2}C_1Ln^{-\frac{1}{W}}$ -net of \mathcal{G}_n .

Lemma 18.2. Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measurable space and \mathcal{F} be an arbitrary set of n measurable functions f: $\mathcal{X} \to \mathbb{R}$ of finite $L_2(\mu)$ - diameter diam \mathcal{F} ($\forall f, g \in \mathcal{F}, \int (f-g)^2 d\mu < \infty$). Then $\forall \epsilon > 0$, $N(conv\mathcal{F}, \epsilon diam\mathcal{F}, \| \cdot \|_2) \leq (e + en\epsilon^2)^{2/\epsilon^2}$.

45

Proof. Let $\mathcal{F} = \{f_1, \dots, f_n\}$. $\forall \sum_{i=1}^n \lambda_i f_i$, let Y_1, \dots, Y_k be i.i.d. random variables such that $P(Y_i = f_j) = \lambda_j$ for all $j = 1, \dots, n$. It follows that $\mathbb{E}Y_i = \sum \lambda_j f_j$ for all $i = 1, \dots, k$, and

$$\mathbb{E}\left(\frac{1}{k}\sum_{i=1}^{k}Y_{i}-\sum_{j=1}^{n}\lambda_{j}f_{j}\right) \leq \frac{1}{k}\mathbb{E}\left(Y_{1}-\sum_{j=1}^{n}\lambda_{j}f_{j}\right) \leq \frac{1}{k}\left(\operatorname{diam}\mathcal{F}\right)^{2}.$$

Thus at least one realization of $\frac{1}{k} \sum_{i=1}^{k} Y_i$ has a distance at most $k^{-1/2} \operatorname{diam} \mathcal{F}$ to $\sum \lambda_i f_i$. Since all realizations of $\frac{1}{k} \sum_{i=1}^{k} Y_i$ has the form $\frac{1}{k} \sum_{i=1}^{k} f_{j_k}$, there are at most $\binom{n+k-1}{k}$ of such forms. Thus

$$N(k^{-1/2}\operatorname{diam}\mathcal{F},\operatorname{conv}\mathcal{F}, \|\cdot\|_2) \leq \binom{n+k-1}{k}$$
$$\leq \frac{(k+n)^{k+n}}{k^k n^n} = \binom{k+n}{k}^k \binom{k+n}{n}^n$$
$$\leq e^k \left(\frac{k+n}{k}\right)^k = (e+en\epsilon^2)^{2/\epsilon^2}$$

By triangle inequality and definition of \mathcal{G}_n , diam $\mathcal{G}_n = \sup_{g_1, g_2 \in \mathcal{G}_n} \|g_1 - g_2\|_2 \le 2 \cdot Lm^{-1/V}$. Let $\epsilon \cdot \text{diam}\mathcal{G}_n = \epsilon \cdot 2Lm^{-1/V} = \frac{1}{2}C_1Ln^{-W}$. It follows that $\epsilon = \frac{1}{4}C_1m^{1/V} \cdot n^{-W}$, and

$$N(\operatorname{conv}\mathcal{G}_{n}, \epsilon \operatorname{diam}\mathcal{G}_{n}, \|\cdot\|_{2}) \leq \left(e + en \cdot \frac{1}{16} C_{1}^{2} m^{2/V} \cdot n^{-2W}\right)^{32 \cdot C_{1}^{-2} m^{2/V} n^{2 \cdot W}} \\ = \left(e + \frac{e}{16} C_{1}^{2} d^{-2/V}\right)^{32 \cdot C_{1}^{-2} d^{2/V} n}$$

By definition of \mathcal{F}_m and and induction assumption, $\log N(\operatorname{conv}\mathcal{F}_m, C_1L \cdot m^{-W}, \|\cdot\|_2) \leq D_1 \cdot m$. In other words, the $C_1L \cdot m^{-W}$ -net of $\operatorname{conv}\mathcal{F}_m$ contains at most e^{D_1m} elements. This defines a partition of $\operatorname{conv}\mathcal{F}_m$ into at most e^{D_1m} elements. Each element is isometric to a subset of a ball of radius C_1Lm^{-W} . Thus each set can be partitioned into $\left(\frac{3C_1Lm^{-W}}{\frac{1}{2}C_1Ln^{-W}}\right)^m = \left(6d^W\right)^{n/d}$ sets of diameter at most $\frac{1}{2}C_1Ln^{-W}$ according to the following lemma.

Lemma 18.3. The packing number of a ball of radius R in \mathbb{R}^d satisfies $D(B(0,r),\epsilon, \|\cdot\|) \leq \left(\frac{3R}{\epsilon}\right)^d$ for the usual norm, where $0 < \epsilon \leq R$.

As a result, the $C_1 L n^{-W}$ -net of conv \mathcal{F}_n has at most $e^{D_1 n/d} \left(6d^W\right)^{n/d} \left(e + eC_1^2 d^{-2/V}\right)^{8d^{2/V}C_1^{-2}n}$ elements. This can be upper-bounded by e^n by choosing C_1 and d depending only on V, and $D_1 = 1$.

For k > 1, construct $\mathcal{G}_{n,k}$ such that $\operatorname{conv}\mathcal{F}_{nk^q} \subset \operatorname{conv}\mathcal{F}_{n(k-1)^q} + \operatorname{conv}\mathcal{G}_{n,k}$ in a similar way as before. $\mathcal{G}_{n,k}$ contains at most nk^q elements, and each has a norm smaller than $L\left(n\left(k-1\right)^q\right)^{-1/V}$. To bound the cardinality of a $Lk^{-2}n^{-W}$ -net, we set $\epsilon \cdot 2L\left(n\left(k-1\right)^q\right)^{-1/V} = Lk^{-2}n^{-W}$, get $\epsilon = \frac{1}{2}n^{-1/2}\left(k-1\right)^{q/V}k^{-2}$, 46 and

$$N(\operatorname{conv}\mathcal{G}_{n,k}, \epsilon \operatorname{diam}\mathcal{G}_{n,k}, \|\cdot\|_2) \leq \left(e + enk^q \epsilon^2\right)^{2/\epsilon^2} \Rightarrow$$

$$N(\operatorname{conv}\mathcal{G}_{n,k}, \epsilon \operatorname{diam}\mathcal{G}_{n,k}, \|\cdot\|_2) \leq \left(e + \frac{e}{4}k^{-4+q+2q/V}\right)^{8 \cdot n \cdot k^4 (k-1)^{-2q/V}}$$

. As a result, we get

$$C_k = C_{k-1} + \frac{1}{k^2}$$

$$D_k = D_{k-1} + 8k^4(k-1)^{-2q/V}\log(e + \frac{e}{4}k^{-4+q+2q/V}).$$

For $2q/V - 4 \ge 2$, the resulting sequences C_k and D_k are bounded.