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Lecture 18 Uniform entropy condition of VC-hull classes . 18.465 

In this lecture, we show that although the VC-hull classes might be considerably larger than the VC-classes, 

they are small enough to have finite uniform entropy integral. 

Theorem 18.1. Let (X , A, µ) be a measurable space, F ⊂ {f |f : X → R} be a class of measurable func

tions with measurable square integrable envelope F (i.e., ∀x ∈ X , ∀f ∈ F , |f(x)| < F (x), and �F �2 = � � �V( F 2dµ)1/2 < ∞), and the �-net of F satisfies N(F , ��F �2, � · �) ≤ C 1 for 0 < � < 1. Then there exists 
V� � 2·

a constant K that depends only on C and V such that log N (convF , ��F �2, � · �) ≤ K 1 V +2 . 

Proof. Let N(F , ��F �2, � · �2) ≤ C 
� 

1 
� 

�V � Then � = C1/v = C1/V �F �2 · n−1/V . Let= n. n−1/V , and ��F �2 

L = C1/V �F �2. Then N(F , Ln−1/V , � · �2) ≤ n (i.e., the L n−1/V -net of F contains at most n elements). · 

Construct F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · such that each Fn is a L · n−1/V -net, and contains at most n elements. 

Let W = 1
2 + V 

1 . We proceed to show that there exists constants Ck and Dk that depend only on C and V 

and are upper bounded (supk Ck ∨ Dk < ∞), such that 

(18.1) log N(convFn·kq , CkL · n−W , � · �2) ≤ Dk · n 

for n, k ≥ 1, and q ≥ 3 + V . This implies the theorem, since if we let k →∞, we have log N(convF , C∞L · 
2·V 2 

n−W n. Let � = C∞C1/V n−W , and K = D∞C V +2 C V +2 , we get C∞L n−W = C∞C1/V �F �2n−W =, �·�2) ≤� 
D

∞

∞

C

·
1/V 

�1/W 
∞ � � 2

·
V·

��F �2, n = C
� and log N(convF , ��F �2, � · �2) ≤ K 1 

� 
V +2 . Inequality 18.1 will proved in two · 

steps: (1) 

(18.2) log N(convFn, C1L · n−W , � · �2) ≤ D1 · n 

by induction on n, using Kolmogorov’s chaining technique, and (2) for fixed n, 

(18.3) log N(convFn·kq , CkL · n−W , � · �2) ≤ Dk · n 

by induction on k, using the results of (1) and Kolmogorov’s chaining technique.


For any fixed n0 and any n ≤ n0, we can choose large enough C1 such that C1Ln−W ≥ �F �2. Thus
0 

N(convFn, C1L · n−W , � · �2) = 1 and 18.2 holds trivially. For general n, fix m = n/d for large enough 

d > 1. For any f ∈ Fn, there exists a projection πmf ∈ Fm such that �f − πmf� ≤ C 
1 
m− 1 �F � = Lm− 1 

V V V 

by definition of Fm. Since λf · f = µf · f + λf · (f − πmf), we have convFn ⊂f∈Fn f∈Fm f ∈Fn 

convFm + convGn, and the number of elements |Gn| ≤ |Fn| ≤ n, where Gn = {f − πmf : f ∈ Fn}. We will 
1

find 1 C1Ln− W -nets for both Fm and Gn, and bound the number of elements for them to finish to induction 2 
1 

step. We need the following lemma to bound the number of elements for the 1 C1Ln− W -net of Gn.2 

Lemma 18.2. Let (X , A, µ) be a measurable space and F be an arbitrary set of n measurable functions f : 

X → R of finite L2(µ)- diameter diamF (∀f, g ∈ F , (f − g)2dµ < ∞). Then ∀� > 0, N (convF , �diamF , � · 

�2) ≤ 
� 
e + en�2 

�2/�2 

. 
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Proof. Let F = {f1, · · · , fn}. ∀ i
n 
=1 λifi, let � 

Y1, · · · , Yk be i.i.d. random variables such that P (Yi = fj ) = 

λj for all j = 1, , n. It follows that EYi = λj fj for all i = 1, , k, and · · · · · · ⎛ ⎞ ⎛ ⎞ 
1 

k n 1 
n 1

E ⎝ 
k

Yi − λj fj ⎠ ≤ 
k 

E ⎝Y1 − λj fj ⎠ ≤ 
k 

(diamF)2 
. 

i=1 j=1 j=1 

Thus at least one realization of 1 �k 
Yi has a distance at most k−1/2diamF to 

� 
λifi. Since all realizations k i=1 

of k 
1 �

i
k 
=1 Yi has the form k 

1 �
i
k 
=1 fjk , there are at most 

� 
n+

k
k−1

� 
of such forms. Thus 

N (k−1/2diamF , convF , � · �2) ≤ 
n + 

k

k − 1 

(k + n)k+n � 
k + n 

�k � 
k + n 

�n 

≤ 
kknn 

= 
k n � �k 

k≤ e
k + n 

= (e + en�2)2/�2 

k 

By triangle inequality and definition of Gn, diamGn = supg1,g2∈Gn 
�g1 − g2�2 ≤ 2 · Lm−1/V . Let � · diamGn = 

� 2Lm−1/V = 2
1 C1Ln−W . It follows that � = 4

1 C1m
1/V n−W , and · · 

� �32 C1
−2 m 2/V n 2·W 

N(convGn e + en 
1 

C1
2 m 2/V n−2W 

·

, �diamGn, � · �2) ≤ · 
16 

· 

� �32 C−2d2/V ne 1 
= e + C1

2d−2/V 
·

16 

By definition of Fm and and induction assumption, log N(convFm, C1L · m−W , � · �2) ≤ D1 · m. In other 

words, the C1L m−W -net of convFm contains at most eD1m elements. This defines a partition of convFm· 

into at most eD1m elements. Each element is isometric to a subset of a ball of radius C1Lm−W . Thus each 

set can be partitioned into 
� 

3
1 
C1Lm−W 

�m 
= 

� 
6dW 

�n/d sets of diameter at most 1
2 C1Ln−W according to the 

2 C1Ln−W 

following lemma. 

� �d
Lemma 18.3. The packing number of a ball of radius R in Rd satisfies D(B(0, r), �, � · �) ≤ 3R for the 

usual norm, where 0 < � ≤ R. 

As a result, the C1Ln−W -net of convFn has at most eD1n/d 
� 
6dW 

�n/d � 
e + eC1

2d−2/V 
�8d2/V C1

−2 n 
elements. 

nThis can be upper-bounded by e by choosing C1 and d depending only on V , and D1 = 1.


For k > 1, construct Gn,k such that convFnkq ⊂ convFn(k−1)q + convGn,k in a similar way as before.


Gn,k contains at most nkq elements, and each has a norm smaller than L (n (k − 1)q)−1/V . To bound the


cardinality of a Lk−2n−W -net, we set � 2L (n (k − 1)q)−1/V = Lk−2n−W , get � = 1 n−1/2 (k − 1)q/V 
k−2 ,
· 2 
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and 

N(convGn,k, �diamGn,k, � · �2) ≤ 
� 
e + enkq�2

�2/�2 

⇒ 

N(convGn,k, �diamGn,k, � · �2) ≤ 
� 
e +

4 
e
k−4+q+2q/V 

�8·n·k4(k−1)−2q/V 

. As a result, we get 

1 
Ck = Ck−1 + 

k2


Dk = Dk−1 + 8k4(k − 1)−2q/V log(e + 
e
k−4+q+2q/V ).


4 

For 2q/V − 4 ≥ 2, the resulting sequences Ck and Dk are bounded. � 
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