Theorem 13.1. Assume \mathcal{F} is a VC-subgraph class and $V C(\mathcal{F})=V$. Suppose $-1 \leq f(x) \leq 1$ for all $f \in \mathcal{F}$ and $x \in \mathcal{X}$. Let $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and define $d(f, g)=\frac{1}{n} \sum_{i=1}^{n}\left|f\left(x_{i}\right)-g\left(x_{i}\right)\right|$. Then

$$
\mathcal{D}(\mathcal{F}, \varepsilon, d) \leq\left(\frac{8 e}{\varepsilon} \log \frac{7}{\varepsilon}\right)^{V}
$$

(which is $\leq\left(\frac{K}{\varepsilon}\right)^{V+\delta}$ for some δ.)

Proof. Let $m=\mathcal{D}(\mathcal{F}, \varepsilon, d)$ and f_{1}, \ldots, f_{m} be ε-separated, i.e.

$$
\frac{1}{n} \sum_{i=1}^{n}\left|f_{r}\left(x_{i}\right)-f_{\ell}\left(x_{i}\right)\right|>\varepsilon
$$

Let $\left(z_{1}, t_{1}\right), \ldots,\left(z_{k}, t_{k}\right)$ be constructed in the following way: z_{i} is chosen uniformly from x_{1}, \ldots, x_{n} and t_{i} is uniform on $[-1,1]$.

Consider f_{r} and f_{ℓ} from the ε-packing. Let $C_{f_{r}}$ and $C_{f_{\ell}}$ be subgraphs of f_{r} and f_{ℓ}. Then
$\mathbb{P}\left(C_{f_{r}}\right.$ and $C_{f_{\ell}}$ pick out different subsets of $\left.\left(z_{1}, t_{1}\right), \ldots,\left(z_{k}, t_{k}\right)\right)$
$=\mathbb{P}\left(\right.$ At least one point $\left(z_{i}, t_{i}\right)$ is picked by $C_{f_{r}}$ or $C_{f_{\ell}}$ but not picked by the other $)$
$=1-\mathbb{P}\left(\right.$ All points $\left(z_{i}, t_{i}\right)$ are picked either by both or by none $)$
$=1-\mathbb{P}\left(\left(z_{i}, t_{i}\right) \text { is picked either by both or by none }\right)^{k}$

Since z_{i} is drawn uniformly from x_{1}, \ldots, x_{n},

$$
\begin{aligned}
& \mathbb{P}\left(\left(z_{1}, t_{1}\right) \text { is picked by both } C_{f_{r}}, C_{f_{\ell}} \text { or by neither }\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{P}\left(\left(x_{i}, t_{1}\right) \text { is picked by both } C_{f_{r}}, C_{f_{\ell}} \text { or by neither }\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{1}{2}\left|f_{r}\left(x_{i}\right)-f_{\ell}\left(x_{i}\right)\right|\right) \\
& =1-\frac{1}{2} \frac{1}{n} \sum_{i=1}^{n}\left|f_{r}\left(x_{i}\right)-f_{\ell}\left(x_{i}\right)\right| \\
& =1-\frac{1}{2} d\left(f_{r}, f_{\ell}\right) \leq 1-\varepsilon / 2 \leq e^{-\varepsilon / 2}
\end{aligned}
$$

Substituting,

$$
\begin{aligned}
& \mathbb{P}\left(C_{f_{r}} \text { and } C_{f_{\ell}} \text { pick out different subsets of }\left(z_{1}, t_{1}\right), \ldots,\left(z_{k}, t_{k}\right)\right) \\
& =1-\mathbb{P}\left(\left(z_{1}, t_{1}\right) \text { is picked by both } C_{f_{r}}, C_{f_{\ell}} \text { or by neither }\right)^{k} \\
& \geq 1-\left(e^{-\varepsilon / 2}\right)^{k} \\
& =1-e^{-k \varepsilon / 2}
\end{aligned}
$$

There are $\binom{m}{2}$ ways to choose f_{r} and f_{ℓ}, so
$\mathbb{P}\left(\right.$ All pairs $C_{f_{r}}$ and $C_{f_{\ell}}$ pick out different subsets of $\left.\left(z_{1}, t_{1}\right), \ldots,\left(z_{k}, t_{k}\right)\right) \geq 1-\binom{m}{2} e^{-k \varepsilon / 2}$.
What k should we choose so that $1-\binom{m}{2} e^{-k \varepsilon / 2}>0$? Choose

$$
k>\frac{2}{\varepsilon} \log \binom{m}{2}
$$

Then there exist $\left(z_{1}, t_{1}\right), \ldots,\left(z_{k}, t_{k}\right)$ such that all $C_{f_{\ell}}$ pick out different subsets. But $\left\{C_{f}: f \in \mathcal{F}\right\}$ is VC, so by Sauer's lemma, we can pick out at most $\left(\frac{e k}{V}\right)^{V}$ out of these k points. Hence, $m \leq\left(\frac{e k}{V}\right)^{V}$ as long as $k>\frac{2}{\varepsilon} \log \binom{m}{2}$. The latter holds for $k=\frac{2}{\varepsilon} \log m^{2}$. Therefore,

$$
m \leq\left(\frac{e}{V} \frac{2}{\varepsilon} \log m^{2}\right)^{V}=\left(\frac{4 e}{V \varepsilon} \log m\right)^{V}
$$

where $m=\mathcal{D}(\mathcal{F}, \varepsilon, d)$. Hence, we get

$$
m^{1 / V} \leq \frac{4 e}{\varepsilon} \log m^{1 / V}
$$

and defining $m^{1 / V}=s$,

$$
s \leq \frac{4 e}{\varepsilon} \log s
$$

Note that $\frac{s}{\log s}$ is increasing for $s \geq e$ and so for large enough s, the inequality will be violated. We now check that the inequality is violated for $s^{\prime}=\frac{8 e}{\varepsilon} \log \frac{7}{\varepsilon}$. Indeed, one can show that

$$
\frac{4 e}{\varepsilon} \log \left(\frac{7}{\varepsilon}\right)^{2}>\frac{4 e}{\varepsilon} \log \left(\frac{8 e}{\varepsilon} \log \frac{7}{\varepsilon}\right)
$$

since

$$
\frac{49}{8 e \varepsilon}>\log \frac{7}{\epsilon}
$$

Hence, $m^{1 / V}=s \leq s^{\prime}$ and, thus,

$$
\mathcal{D}(\mathcal{F}, \varepsilon, d) \leq\left(\frac{8 e}{\varepsilon} \log \frac{7}{\varepsilon}\right)^{V}
$$

