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Some notes on location and scatter functionals 

Recall that a sequence Qk of laws (probability measures), here on Rd, is  

Q

said to converge weakly to a law  Q if fdQk → fdQ  for every bounded 
continuous function f . There exists a metric ρ on the set of all laws on Rd 

which metrizes weak convergence, in other words Qk → Q weakly if and only 
if ρ(Qk , Q) → 0, e.g. Dudley (2002, Sec. 11.3). A set U of laws is called 
weakly open if and only if whenever Q ∈ U and Qk → Q weakly we have 

k ∈ U for all k large enough. Equivalently, for each Q ∈ U , there  is  an  
r >  0 such that whenever ρ(Q, P ) < r  we have P ∈ U . 

Much of robustness theory emphasizes mixture laws 

P = (1  − λ)F0 + λQ (1) 

where Q is an arbitrary “contaminating” distribution, F0 is a special dis-
tribution with a density, say for definiteness a normal, and 0 ≤ λ <  1/2, 
e.g. Huber [20, pp. 86, 89]. Despite the generality of Q, the contamination 
model (1) doesn’t include some, perhaps the majority, of laws P treated as 
normal to an acceptable approximation in practice, such as laws P on R with 
P ([0, ∞)) = 1, and laws discretized by rounding to finitely many decimal 
places. The latter laws also cannot be obtained by replacement of up to half 
a normal or other continuous law, but can be quite close to normal laws in 
metrics for the weak topology. Huber [20, p. 3] says that “in the physical 
sciences typical ‘good data’ samples appear to be well modeled by an error 
law” (1) with 0.01 ≤ λ ≤ 0.1. But, “modeled” seems to allow a further 
approximation and “error” seems to exclude many, perhaps most, data sets. 

Another basic notion in robustness theory is that of breakdown point. 
Before giving some definitions of them, here are remarks on Notations with 
δ: below,  “δ”  is used in the  following  three ways:  δx (without any superscript) 

∗denotes the law which is a point mass at x; δ with varying subscripts will be 
breakdown points, to be defined; and δ with neither subscript nor superscript 
will be a (small) number, usually introduced by “for any δ >  0” or the like. 

Some definitions of breakdown points are for estimators Tn defined on a 
finite sample of size n under replacement of a fraction k/n of the observations 
by arbitrary values, or by adjoining k new such values to the data. Then 
the asymptotics of the breakdown point (largest k/n for replacement, or 
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k/(n + k) for adjunction, such that Tn doesn’t escape from all compact sets) 
as n → ∞  are considered. Another type of definition is for functionals T 
defined on laws P , which yield estimators when applied to empirical measures 
Pn. In a functional definition one has a set of neighborhoods Nε(P ) of  P 
indexed by ε >  0. These may be defined by a metric d on laws through 
Nε(P ) :=  Nε,d(P ) :=  {Q : d(Q, P ) < ε}, or in most of the literature, as 
contamination neighborhoods, for 0 < ε  ≤ 1 (nearly always ε ≤ 1/2), 

NC (P ) :=  {Q = (1  − λ)P + λρ : 0  ≤ λ ≤ ε, ρ any law}.ε 

The total variation distance between two laws P and Q on a sample space 
(X,B) is  

d1(P, Q) :=  sup  |(P − Q)(A)| = sup(P − Q)(A) =  sup(Q − P )(B) 
A∈B A∈B B∈B 

by the Hahn-Jordan decomposition, e.g. Dudley (2002, Theorem 5.6.1). To-
tal variation for laws corresponds approximately to replacement for finite 
samples. If P := P(X,B) is the set of all laws on a sample space (X,B), 
and for each P ∈ P, {Nε(P )}0≤ε<∞ is a collection of subsets of P, then  
{Nε(P ) :  0  ≤ ε <  ∞, P  ∈ P} will be called a suitable set of neighborhoods 
iff for all P ∈ P, (a)  N0(P ) =  {P}, (b)  For  0  ≤ ε <  ε′ , Nε(P ) ⊂ Nε� (P ), and 
(c) For ε >  0, ε′ > 0, Q ∈ Nε(P ), and ρ ∈ Nε� (Q), we have ρ ∈ Nε+ε� (P ). 

These conditions clearly hold for neighborhoods defined by metrics. They 
also hold for contamination neighborhoods if we define Nε

C (P ) :=  N1 
C (P ) =  

P for ε >  1. 
In most definitions found in the literature, T takes values in a parameter 

∗space Θ with a topology and for ε >  ε (T, P ), the breakdown point at P , 
there is no proper compact subset K ⊂ Θ such that T on Nε(P ) takes values 
in K. (For non-compact parameter spaces, as in these notes, “proper” is 
redundant.) 

A set  of  n points in R
d are said to be in general position if for k = 

0, 1, . . . , d  − 1, no k-dimensional hyperplane contains k + 2 or more of the 
points. 

Many authors consider breakdown points of functionals in the contami-
nation sense at laws P on Rd such that P (H) = 0 for any hyperplane H of 
dimension d − 1. I.i.d. samples from such laws are almost surely in general 
position. On finite samples, breakdown (in the replacement or contamination 
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sense) is usually considered for samples in general position. At other laws or 
samples, the breakdown points may be lower. 

∗Another issue is: for 0 < ε  < ε , is  T required to be uniquely defined at all 
Q ∈ Nε(P )? Different answers might be deduced from the literature. On the 
“no” side, the Rousseeuw minimum-volume-ellipsoid (MVE) functional, to 
be defined after Proposition 2, has been generally agreed to have breakdown 
point 1/2 at suitable P although it had only been shown to be uniquely 
defined at symmetric, unimodal distributions satisfying further restrictions, 
as in Tatsuoka and Tyler [35]; this set is not dense in Nε(P ) for any ε >  0, 
for any of the families of neighborhoods mentioned so far. On the “yes” 
side, proofs of upper bounds for the breakdown points of some M-functionals 
(Hampel, Ronchetti, Rousseeuw and Stahel [17, §5.5(a) p. 298]; Tyler [36]) 
assume that the functionals are defined on contamination neighborhoods of a 
normal law, or of finite samples in general position, respectively. Since each 
answer is of independent interest, separate definitions will be given. 

Definition. Let Θ be a topological space, (X,B) a sample space, and 
{Nε(P ), 0 ≤ ε <  ∞, P  ∈ P  := P(X,B)} a suitable set of neighbor-
hoods. Let T be a functional defined uniquely on a domain D ⊂  P  with 
values in Θ. Then for each P ∈ D, the  explosion breakdown point of T at P 
is 

∗ ∗ ε (T, P ) :=  ε (T, P, {Nε}0≤ε<∞, Θ) := inf{ε ∈ [0, 1] : 

for each compact K ⊂ Θ, T (Q) /∈ K for some Q ∈ D ∩ Nε(P )}. 
∗ ∗If there is no such ε, set  ε := 1. Let εC (T, P ) denote the explosion 

∗breakdown point for contamination neighborhoods, and εd(T, P ) the one for 
d-neighborhoods. 

∗The next definition, of δ , requires  T to be uniquely defined on some 
neighborhoods. Sometimes T becomes undefined only just after escaping 

∗ ∗from compact sets, so that δ = ε . 

∗Definition. Let  δ (T, P ), the definition-explosion breakdown point of T at P , 
∗be defined as the supremum of ε with 0 < ε  < ε (T, P ) such that Nε(P ) ⊂ D, 

∗ ∗ ∗ ∗or 0 if there is no such ε. Define δC and δd by analogy with ε and εd.C 

∗Here is a further definition, of r . It will not be called a breakdown point 
since discontinuity has not generally been considered as breakdown. 
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∗Definition. Let  r (T, P ), the radius of continuity of T at P , be defined as 
∗δ (T, P ) with the additional requirement that T (·) is weakly continuous at 

∗Q for all Q ∈ Nε(P ). Define r ∗ and rd again analogously. C 

If neighborhoods Nε are defined by the total variation (replacement) dis-
tance d1 then the corresponding breakdown points and radii will be written 

∗ ∗ as εR := εd1 
. If  Q = (1  − λ)P + λρ for any law ρ then clearly d1(P, Q) ≤ λ, 

∗ ∗with equality if ρ is singular with respect to P . Thus  ε and likewise R ≤ εC 
∗ ∗for δ and r . 

Notions of “location” and “scale” or multidimensional “scatter” func-
tional will be defined in terms of equivariance, as follows. 

Definitions. Let  Nd be the set of symmetric nonnegative definite d × d 
matrices and Pd its subset of strictly positive definite matrices. Let Q �→ 
µ(Q) ∈ R

d, resp.  Σ(Q) ∈ Nd, be a functional defined on a set D of laws 
Q on R

d. Then  µ (resp. Σ) is called an affinely equivariant location (resp. 
scatter) functional iff for any nonsingular d × d matrix A and v ∈ R

d, with  
f(x) :=  Ax+ v, and  any  law  Q ∈ D, the image measure P := Q◦f−1 ∈ D  
also, with µ(P ) =  Aµ(Q) +  v or, respectively, Σ(P ) =  AΣ(Q)A′. For  d = 1,  
σ(·) with  0  ≤ σ <  ∞ will be called an affinely equivariant scale functional 
iff σ2 satisfies the definition of affinely equivariant scatter functional. If we 
have affinely equivariant location and scatter functionals µ and Σ on the same 
domain D then (µ, Σ) will be called an affinely equivariant location-scatter 
functional on D, and likewise for a location-scale functional (µ, σ). 

Dispersion often occurs in the literature as a synonym for “scatter.” 
Clearly, for laws Q with finite second moments, the mean µ(Q) and  covari-
ance matrix Σ(Q) give affinely equivariant location and scatter functionals. 

∗The median is an affinely equivariant location functional with δ = 
1/2 at any law. The MAD is an affinely equivariant scale functional with 
∗δC (MAD, P ) ≡ 1/2 also if the scale parameter space is taken as 0 ≤ σ <  ∞. 

If σ >  0 is required, however, the MAD is not defined at laws P with 
∗ p := sup{P ({t}) :  t ∈ R} > 1/2 and at other laws P has δC (MAD, P ) =  

β = (  1 − p)/(1 − p), with β = 1/2 only for continuous laws P . Such a
2 

dependence on Θ naturally also occurs for other scale functionals, e.g. the 
interquartile range. 

∗Let T be an affinely equivariant location or scatter functional. Then εC , 
∗ ∗δC , and  r are all affinely invariant and 1/2 as a target maximal value for C 
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∗ has been much emphasized in the literature. As will be seen, however, εC 
∗ ∗ ∗striving for ε = 1/2 has led to some functionals for which δ = 0  or  rd may C C 

be 0 (even at laws with smooth densities). 
For metrics d that metrize that weak topology and so are not affinely 

∗ ∗ ∗invariant (e.g. the Prohorov metric, Dudley, 2002, Sec. 11.3), εd, δ and rdd 

may still be affinely invariant (if they are constant!), e.g. for T the median 
∗ ∗ ∗and d the Prohorov metric, εd(T,  P ) =  δd (T,  P ) ≡ 1/2 > 0 ≡ rd (T,  P ) for all 

∗P . But  e.g.  for  T =  MAD  and  Θ = (0, ∞), ε∗ = δd is not affinely invariant. d 
∗ ∗ ∗On the other hand the sets where εd > 0, δ > 0 and  rd > 0 are  affinely  d 

invariant. Thus, one may seek T for which these sets are as large as possible, 
∗rather than making the values of ε as large as possible. 

Location functionals which in some respects improve on the median and 
∗still have δC = 1/2 at all laws have been proposed, especially by Huber, e.g. 

[20, pp. 52-53, (5.22) p. 86]. Such functionals can be adjusted for scale, e.g. 
using the MAD, to make them equivariant [20, §§6.4-6.7], and can be defined 
when the scale functional σ = 0, as we saw in earlier handouts. 

The requirement of affine equivariance seems to be especially natural for 
laws on R. In  Rd for d ≥ 1, the spatial median for a random vector X or its law 
is an m that minimizes E(|X −m|−|X|). For d = 1,  m satisfies this iff it is a 
median of X. For  d ≥ 2 the spatial median is unique except for distributions 
concentrated in lines with non-unique medians there [28], as also shown in a 
handout. The spatial median is equivariant under Euclidean transformations 
where A is an orthogonal transformation, or a constant multiple of one, but 
not under general affine transformations for d >  1. 

The following easy fact gives consequences of affine equivariance without 
any further assumptions. 

Theorem 1. Let µ(·) be an affinely equivariant location functional defined 
on a class D of laws on Rd, and  let  A be a set of non-singular affine trans-
formations of R

d. Let  P ∈ D  be such that P ◦ A−1 = P for each A ∈ A. 
Then 
(a) µ(P ) ∈ SA := {x ∈ R

d : Ax = x for all A ∈ A}. 
(b) If SA is a singleton {xA}, then  µ(P ) =  xA. 
(c) If for some v ∈ R

d , A consists of the one map x �→ 2v−x, then  µ(P ) =  v. 
(d) Let 2 ≤ n ≤ d + 1. Let  V be a set of n points of R

d in general position. 
Then for any of the n! permutations π of the points of V , there is a non-
singular affine Aπ , uniquely determined on the unique (n − 1)-dimensional 
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hyperplane H including V , with  Aπ (v) =  π(v) for each v ∈ V . If the hy-
potheses on P hold for A equal to the set of all these Aπ , and  P (H) = 1, 
then µ(P ) =  n−1 

v∈V v. 
(e) In part (d), suppose n = d + 1  and the points of V are the vertices of 
a regular simplex. Let Σ be an affinely equivariant scatter functional. Then 
Σ(P ) =  cI for some c ≥ 0 where I is the d × d identity matrix. 

Proof. Part (a) follows directly from the definition of equivariant location 
functional. Then part (b) follows from part (a). For part (c), note that 
x �→ 2v − x has a unique fixed point v, so (c) follows from (b); here P is 
symmetric around v. 

w

For part (d), let x1, ..., xn be the points of V . Since they are in general 
position, the vectors vj = xj − x1 for j = 2, ..., n are linearly independent. 
Let y1, ..., yn be the vertices of a regular (n − 1)-dimensional simplex with all 
edges of equal length. Then clearly y1, ..., yn are also in general position and 

j = yj − y1 for j = 2, ..., n are linearly independent. Thus there is a non-
singular linear transformation (matrix) B with Bvj = wj for j = 2, ..., n. 
Defining a non-singular affine transformation by Ax = B(x − x1) +  y1 = 
Bx + (y1 − Bx1) we have  Axj = yj for j = 1, ..., n, so we can assume that xj 

are the vertices of a regular simplex. 

A

Recall from group theory that any permutation can be obtained by com-
posing transpositions, so given any two points u, v of V we need to find an 
affine A with Au = v, Av = u, and  Aw = w for all w ∈ V other than u and 
v. For  V the set of vertices of a regular simplex, we can take A as reflection 
in the (d − 1)-dimensional hyperplane perpendicular to u − v and through 
the midpoint of the line segment from u to v, so the affine transformations 

π exist. 
nLet W := { i=2 si(xi −x1) :  si ∈ R, i  = 2, ..., n}, an  (n−1)-dimensional 

n nlinear subspace of Rd. Then  W = { i=1 tixi : ti ∈ R, i  = 1, ..., n, j=1 tj = 
n0}, as is seen by the relations ti = si for i = 2, ..., n and t1 = − j=2 sj . For  

a given point of W , the  numbers  si or ti are uniquely determined. It’s easily 
nseen that H = x1 + W = {x1 + w : w ∈ W }. Then  H = { j=1 λj xj : λj ∈ 

n
R, j  = 1, ..., n, j=1 λj = 1}, where  λ1 = 1  +  t1 and λj = tj for j = 2, ..., n, 
and the λj are uniquely determined. If A is any affine transformation of Rd , 

n n n nthen for any {λj }j=1 ∈ Rn with j=1 λj = 1,  A j=1 λj xj = j=1 λj A(xj ). 
If A leaves each xj fixed, it follows that A leaves fixed each point of H , so  A 
is uniquely determined on H as stated. 
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There is an affine transformation AH of R
d such that AH x = x for all 

x in H and AH y �= y for all y not in H . Then  AH induces the identity 
permutatation of V , and we can assume it is the affine transformation chosen 
to do so since P (H) = 1  and  so  P ◦ A−1 = P .  Thus by part  (a),  µ(P ) ∈ H .H


Let π be a permutation interchanging xi and xj for some i �
= j and 
nAπ the corresponding affine transformation. We have µ(P ) =  j=1 λj xj for 

some real λj with sum 1, and µ(P ) =  Aπ µ(P ) =  µ(P ) +  (λi − λj )(xj − xi), 
so λi = λj , and  λi = 1/n for all i, so  µ(P ) =  n−1 

v∈V v, proving (d). 
For part (e), we can assume v∈V v = 0.  Let  v �= w in V and let 

S := V \ {v, w}. Let  A be the linear transformation interchanging v and 
w and leaving each s ∈ S fixed. Then A is the reflection in the linear 
subspace spanned by S, which contains (v + w)/2. By affine equivariance it 
follows that v −w is an eigenvector of Σ(P ) ∈ Nd. Eigenvectors with distinct 

= u �eigenvalues are orthogonal, but for v � = w in V , v −w and v − u are not 
orthogonal, so they must have the same eigenvalue. Iterating, we find that 
all such eigenvectors have the same eigenvalue c ≥ 0. Since they span R

d , 
Σ(P ) =  cI follows. 2 

In part (c), of course, not all symmetric distributions P are necessarily in 
the domain D on which µ(·) is (uniquely) defined. To put all symmetric dis-
tributions in D could violate some other useful property of µ(·), as Tatsuoka 
and Tyler [35, p. 1235]) note. One can look for µ(·) with good properties 
defined on as many symmetric laws as possible. 

The simplest special case of Theorem 1 part (d) is that P puts mass 
1/n in each point of V . That case is natural in that any simplex is affinely 
equivalent to a regular simplex with all vertices equidistant, whose centroid 
is the obvious location. Yet, if n − 1 observations are close together and the 
nth moves far away, it retains its non-robust influence. By nesting multiple 
such simplices for n = d + 1, Donoho and Gasko [10] illustrate why the 
breakdown point of a purportedly robust estimator is as low as 1/(d + 1),  a  
bound which, apparently for different reasons, they also found for another 
class of estimators, as Maronna [26] did earlier for equivariant M-estimators 
of location and scatter. 

Here is a related consequence of Theorem 1, not directly about breakdown 
points: 

Proposition 2. For d = 1, 2, ..., there is a sequence {Qm}m≥3 of laws on 
d

R having densities such that for a compact set K ⊂ R
d , for all m ≥ 3, 
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Qm(K) =  d/(d + 1)  and there exist µm ∈ R
d such that for every affinely 

equivariant location functional µ(·) defined at Qm, µ(Qm) =  µm, and  |µm| →
∞ as m → ∞. 

x
e
Proof. Let  V be the set of d + 1 vertices of a regular simplex S such that 
1 := (1, 0, . . . , 0)′ ∈ V , the other d vertices all are in the subspace where 
1 = 0, and the centroid of S is e1/(d + 1).  All  points  of  V are within 

1 a distance 1 of 0. Let Pd+1 := 
d+1 v∈V δv . For any r >  0 let  Ur be 

ρ

ρ
the uniform distribution on the ball in R

d with center 0 and radius r. Let  
r := Pd+1 ∗ Ur , which has a density. For A as in Theorem 1(e) and (d), 

since each A ∈ A  is an orthogonal transformation preserving Ur , we  have  
r ◦A−1 = ρr . Let  µ(·) be an affinely equivariant location functional defined 

at ρr . Then  µ(ρr ) =  e1/(d+1). Let Ma((x1, . . . , xd)
′) := (ax1, x2, . . . , xd)

′ for 
any a >  0 and  τr := ρr ◦M−1 . Then  for  r ≤ 1/3, τr has probability 1/(d+1)  1/r 
in the half-space x1 ≥ (1/r)−1 and  d/(d+1) in the ball K := {x : |x| ≤ 2}, 
with |µ(τr )| = 1/[r(d+1)]  if  µ(τr ) is defined. Letting Qm := τ1/m for m ≥ 3 
gives the conclusion. 2 

Rousseeuw [30] defined the minimum-volume ellipsoid (MVE) location-
scatter estimator whose functional form is as follows. Given a law P on Rd , 
suppose there is a unique ellipsoid E = {x : (x − µ)′C−1(x − µ) ≤ 1} of 
smallest d-dimensional volume with P (E) ≥ 1/2, where x and µ are column 
vectors in Rd and C is a positive definite symmetric d×d matrix. Dividing C 
by a constant cd > 0 depending on d we can write E = {x : (x−µ)′ Σ−1(x− 
µ) ≤ cd}, where  cd is chosen so that if P is a normal distribution, Σ is 
its covariance matrix. Then µ and Σ are affinely equivariant location and 
scatter functionals of P respectively, because any affine transformation A 
with Ax ≡ Bx+ v takes ellipsoids to ellipsoids and multiplies all volumes by 
the same (Jacobian) factor det B. 

For a finite sample of size n, if  x� denotes the largest integer ≤ x, 
the MVE was originally defined in terms of the ellipsoid of smallest volume 
containing n/2�+ 1 of the sample points. Later, this was adjusted to require 
E to contain (n + d + 1)/2� points, with the aim of maximizing the finite-
sample breakdown point. In either case, asymptotically as n → ∞, one  gets  
the minimum-volume ellipsoid with probability ≥ 1/2, if it is unique. 

∗Location-scatter functionals with εC = 1/2 (at continuous distributions) 
for all d have been proposed, including the Rousseeuw minimum-volume-
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∗ellipsoid estimator just defined ([30], [5]), but δ for it is 0 as shown in C 

Section 3 below. 
Proposition 2 showed that mass 1/(d+1)  escaping  to  ∞ can cause break-

down of quite general equivariant location functionals provided that the re-
maining d/(d+ 1) of the mass, while remaining in a compact set, approaches 
some restricted limit (the limit apparently cannot have a density). In the 
given proof, the limit is concentrated in a union of d line segments parallel to 
the x1 axis and so gives mass k/(d + 1)  to  some  k-dimensional hyperplanes 
for k = 1, . . . , d − 1. 

Proposition 6 will show that any affinely equivariant location functional 
∗ µ(·) on  R, if it  has  δ = 1/2 at one or more laws, cannot be extended to be C 

1weakly continuous at the law Q = 
2
(δ0 + δ1). For a nonparametric location 

functional this is a drawback since by Theorem 1(c), µ(Q) naturally would 
be defined as 1/2. On the other hand there do exist location and scale 
functionals µ and σ, defined and weakly continuous on all laws on R and 

∗affinely equivariant, with δ = α at every law, for any α with 0 < α <  1/2,C 

via trimming (Section 3). Thus the notion of 1/2 as “optimal” breakdown 
point, often stated in the literature, may not apply from a nonparametric 
viewpoint. 

1 Nonexistence facts in dimension 2 or higher 

Call a location functional µ(·) or a scatter functional Σ(·) singularly affine 
equivariant if in the definition of affine equivariance A can be any matrix, 
possibly singular. It’s easily seen that if a functional is defined on all laws, 
affinely equivariant, and weakly continuous, then it is singularly affine equiv-
ariant. For empirical measures Pn = n−1(δX1 +· · ·+δXn ), the classical sample 
mean and covariance are evidently singularly affine equivariant. It turns out 
that in dimension d ≥ 2, there are essentially no other singularly affine equiv-
ariant location and scatter functionals, and so weak continuity at all laws is 
not possible. First the known fact for location will be recalled, then an at 
least partially known fact for scatter will be stated and proved. 

Let X be a d × n data matrix whose jth column is Xj ∈ R
d. Let  X i 

be the ith row of X. Let  1n be the n × 1 vector with all components 1. 
Let X = xdPn be the sample mean vector in Rd, so  that  X − X1′ is the n 

centered data matrix. Note that Pn, and thus X and Σ(X), are preserved 
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by any permutation of the columns of X. The next fact was proved in detail 
in the handout “Non-existence of some affinely equivariant functionals in 
dimension d ≥ 2.” 

Theorem 3. (a) If µ(·) is a singularly affine equivariant location functional 
(estimator) defined for all Pn on R

d for d ≥ 2 and a fixed  n, then  µ(Pn) ≡ 
xdPn, the sample mean. 

(b) If in addition µ(·) is defined for all n and all Pn on Rd, then as  n varies, 
µ(·) is not weakly continuous. Thus, there is no affinely equivariant, weakly 
continuous location functional defined on all laws on Rd for d ≥ 2. 

x

Proof. Part (a) follows from a result and proof of Obenchain [29, Lemma 
1] and permutation invariance, as noted in an unpublished paper of Donoho 
and by Rousseeuw [30], [31, Proposition 2]. Then (b) follows directly, for 

1 = n, x2 = · · ·  = xn = 0,  n → ∞. 2 

Next is a related fact about scatter functionals. Davies [7, p. 1879] made 
a statement closely related to part (b), strong but not quite in the same 
generality, and very briefly indicated a proof by saying that the fact “corres-
ponds” to one for location functionals, as in the preceding theorem. I don’t 
know a reference for part (a), so a proof will be given. 

Theorem 4. (a) Let Σ(·) be a singularly affine equivariant scatter functional 
defined on all empirical measures Pn on Rd for d ≥ 2 and some fixed n ≥ 2. 
Write Σ(X) := Σ(Pn). Then there is a constant cn ≥ 0, depending on Σ(·), 
such that for any X, Σ(X−X1′ n)(X−X1′ n) =  cn(X−X1′ n)′ . In other words, 
applied to centered data matrices, Σ is proportional to the sample covariance 
matrix. 

P
(b) If Σ(·) is an affinely equivariant scatter functional defined for all n and 

n on Rd for d ≥ 2, weakly continuous as a function of Pn, then  Σ ≡ 0. 

Proof. (a)  We  have  Σ(BX) =  BΣ(X)B′ for any d × d matrix B. For any 
U, V ∈ R

n let X1 = U ′ , X2 = V ′, and  (U, V ) := Σ12(X). Then (·, ·) 
is well-defined, letting B11 = B22 = 1  and  Bij = 0 otherwise. It will be 
shown that (·, ·) is a semi-inner product. We have (U, V ) ≡ (V, U) via  B 
with B12 = B21 = 1  and  Bij = 0 otherwise, since Σ is symmetric. For 
B11 = B21 = 1  and  Bij =  0  otherwise we get  for  any  U ∈ Rn that 

(U, U) = Σ12(BX) = (BΣ(X)B′)12 = Σ11(X) ≥ 0. (2) 
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For constants a and b, (aU, bV ) ≡ ab(U, V ) follows for B11 = a, B22 = b, 
and Bij = 0 otherwise. It remains to prove biadditivity (U, V + W ) ≡ 
(U, V )+(U, W ). For d ≥ 3 this is easy, letting X3 = W , B11 = B22 = B23 = 1,  
and Bij = 0  otherwise.  For  d = 2,  we  first  get  (U + V, V ) =  (U, V ) +  (V, V ) 

1from B = (1
1). Symmetrically, (U, U + V ) =  (U, U) + (U, V ). Then from 0


1
B = (1
1) we  get  1 

(U + V, U + V ) = (U, U) + 2(U, V ) + (V, V ). (3) 

Letting ‖W‖2 := (W, W ) for any W ∈ R
n we get the parallelogram law 

‖U + V ‖2 + ‖U − V ‖2 ≡ 2‖U‖2 + 2‖V ‖2 . Applying this repeatedly we get 
for any W, Y , and  Z ∈ Rn that 

‖W +Y +Z‖2−‖W−Y −Z‖2 = ‖W +Y ‖2−‖W−Y ‖2+‖W +Z‖2−‖W−Z‖2 , 

letting first U = W + Y , V = Z, then  U = W − Z, V = Y , then  U = W , 
V = Z, and lastly U = W , V = Y . Applying (3) and dividing by 4 gives 
(W, Y + Z) ≡ (W, Y ) +  (W, Z), the desired biadditivity. So (·, ·) is indeed a 
semi-inner product, in other words there is a C(n) ∈ Nn such that (U, V ) ≡ 
U ′C(n)V . By the permutation invariance, there are numbers an ≥ 0 and  bn 

such that C(n)ii = an for all i = 1, . . . , n  and C(n)ij = bn for all i �
c

= j. Let  
n := an − bn. 

Let ei ∈ R
n be the ith standard unit vector. For each y ∈ R

n let y = � n 1 n n 
i=1 yiei. Let  y := 

n i=1 yi, so  that  y − y1n = i=1(yi − y)ei. Then  for  
any z ∈ Rn , 

n 

(y − y1n, z  − z1n) =  C(n)ij (yi − y)(zj − z) =  cn(y − y1n)′(z − z1n). 
i,j=1 

For 1 ≤ j ≤ k ≤ d, let  Bir := δrπ(i) for a function π from {1, 2, . . . , d} into 
itself with π(1) = j and π(2) = k. Then  (BX)1 = Xj and (BX)2 = Xk . 
Thus (Xj , Xk) = Σ12(BX) =  Σjk(X), recalling (2) for j = k. 

Let X ∈ Rd have ith component X 
i 
and Y j := (Xj )′. Then  

Σjk(X − X1′ 
k k 

n) =  (Y j − X
j 
1n, Y k − X 1n) =  cn(Y j − X

j 
1n)′(Y k − X 1n), 

where cn ≥ 0 is seen when j = k and the coefficient of cn is strictly positive, 
as it can be since n ≥ 2. Thus part (a) is proved. 
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P
For part (b), consider empirical measures Pn = Pmn, so that  each  Xj in 

n is repeated m times in Pmn. Since  the  X’s and Σs for Pn and Pmn must be 
the same, we get that cmn = cn/m which likewise equals cm/n. Thus  there  
is a constant c1 such that cn = c1/n for all n.√ 

Let X11 := −X12 := n, let  Xij = 0  for  all  other  i, j and let n → ∞. 
Then X ≡ 0, Pn → δ0 weakly, and Σ(δ0) is the 0 matrix by singular affine 
equivariance with B = 0, but Σ(Pn) don’t converge to 0 unless c1 = 0  and  
so cn = 0  for  all  n, proving (b). 2 

So, the three properties of T : (a) affine equivariance, (b) weak continu-
ity on its domain D, and (c) being everywhere defined, cannot all hold for 
location or scatter functionals on Rd for d ≥ 2 although they can for d = 1.  
Which one(s) should be given up? Some functionals, such as the median and 
MAD, fail (b), but for d >  1, it seems that known functionals tend to fail 
(c). Specifically, if Σ is required to be strictly positive definite, then at a 
law concentrated in a proper hyperplane, Σ cannot be defined and affinely 
equivariant. 

One can then ask: on how large a domain D of laws can (a) and (b) hold? 
Consider replacing (c) by: 

d(c′) D is open and dense for the weak topology in the set of all laws on R . 

If (c′) holds then the functional is undefined only on some nowhere dense 
and thus topologically small set. Let d metrize weak convergence. Then both 

∗D is open and (b) holds if and only if for each P ∈ D, rd (T, P ) > 0. Then, 
almost surely the empirical measures Pn will also be in D for n large enough 
and T (Pn) → T (P ). 

An open domain D offers the possibility that continuity can be improved 
to Fréchet differentiability of some order or all orders with respect to some 
norm metrizing weak convergence. 

For some location and scatter functionals or estimators T on Rd for d ≥ 2, 
there are ηk with 0 ≤ η0 ≤ η1 ≤ · · · ≤ ηd−1 < 1 and  ηd−1 > 0 such that T (P ) 
is undefined only for some P such that there is a hyperplane H of dimension 
k = 0, 1, . . . ,  or d − 1, with P (H) ≥ ηk . Such P form a closed, nowhere 
dense set F for any ηk as described, so T restricted to the complement of F 
satisfies (c′). For example, this holds for the Stahel-Donoho functional based 
on the median and MAD, cf. e.g. [27], with ηd−1 = 1/2 > ηd−2 = 0,  and  for  
the M-functionals based on tν distributions for d ≥ 2 and  ν >  1 (Kent  and  

12




Tyler [21], for finite samples), with ηk = (ν + k)/(ν + d). 
On the other hand the median and MAD (for d = 1) are discontinuous on 

weakly dense sets and so do not satisfy (b) on any open (still less dense open) 
domain. This makes it hard, perhaps impossible, to verify (b) on open do-
mains for other functionals based on the MAD or other scale functionals with 
the same discontinuity property, for example in scale-adjusted M-estimates 
of location for d = 1  (Huber  [20,  §§6.5,6.6], Rousseeuw and Croux [32]) or for 
d >  1 in the Stahel-Donoho functional, where univariate functionals µ, σ with 
more continuity can be used, specifically, tν -functionals (Tyler [38], Maronna 
and Yohai [27]). 

Rousseeuw’s minimum-volume-ellipsoid (MVE) functional can be defined 
for laws with P (H) close to or even equal to 1 for a hyperplane H of dimension 
k <  d, by restricting to H and using k-dimensional volume, as Lopuhaä and  

∗Rousseeuw [25, p. 235] suggested. But, for any d ≥ 1, δC (MVE, P ) = 0  at  
laws P with densities, by Proposition 8. 

2 Collapse points 

The following notion of “collapse point” is specific to scatter functionals. It 
and the “implosion breakdown point” defined e.g. by Rousseeuw and Croux 
[32], both involve mass converging toward lower-dimensional hyperplanes. 
But the collapse point is not defined in terms of neighborhoods Nε (contam-
ination or other). 

Definition. If a functional Σ(·) defined on a non-empty set D of laws on Rd 

has values in Nd, the  collapse point κ(Σ) is the infimum of all y ∈ [0, 1] such 
that there is a law Q on R

d with Q(H) ≤ y for every (d − 1)-dimensional 
hyperplane H , and  there  exist  laws  Qk ∈ D  converging to Q weakly with 
det Σ(Qk ) → 0. If there is no such y set κ(Σ) := 1. For d = 1, the collapse 
and breakdown points of a scale functional σ(·) are defined as those of the 
scatter functional σ2(·). 
Remarks. For an affinely equivariant scatter functional on a non-empty do-
main D, the “no such y” case cannot occur. Hampel, Ronchetti, Rousseeuw, 
and Stahel [17, §5.5 (a) p. 298] gave a proof that suggested those of the 
present section. For a comparison of statements, see the paragraph before 
Theorem 7. 
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For d = 1 and the classical standard deviation functional σ(Q) :=  

( x2dQ − ( xdQ)2)1/2, defined on the set D of laws Q with x2dQ < ∞, 
∗it’s well known and easy to check that ε ≡ 0. It’s also easy to see that the C 

collapse point of σ is 1. For the MAD, with parameter space [0,∞), recall 
∗ ∗that δC = εC = 1/2 at any law; the collapse point is also 1/2. 

It is well known that if a law Q puts high probability p in a hyperplane of 
dimension < d, and a scatter functional Σ is required to take values in Pd, so  
that det Σ > 0, then Σ can be undefined at such Q, e.g. Kent and  Tyler  [21],  
and thus have low breakdown point at laws with somewhat smaller values of 
p. The following shows that even allowing det Σ = 0, there is still a tradeoff 
between (definition-explosion) breakdown and collapse points. 

Theorem 5. Let Σ be any affinely equivariant scatter functional with values 
in Θ =  Nd defined on a non-empty family D of laws on Rd . Define its (max-

∗ ∗imum explosion-definition) breakdown point as δC (Σ) := sup{δC (Σ, P ) :  
∗ ∗P ∈ D}. Then  δC (Σ) + κ(Σ) ≤ 1. Moreover, for any λ with 0 < λ <  δC (Σ), 

there is a law ζ with ζ(H) =  1  − λ where H is a (d − 1)-dimensional vector 
subspace and a sequence of laws ζk → ζ weakly with Σ(ζk ) converging to a 
matrix with range included in H and det Σ(ζk ) → 0. 

∗Proof. If  δC (Σ) = 0 the conclusion holds since κ(Σ) ≤ 1 by definition. So 
∗we can assume that for some law P and 0 < ε  < δC (Σ, P ) ≤ 1, for 0 < λ <  ε  

and any law Q, we  have  ρ := (1 −λ)P + λQ ∈ D and Σ(ρ) remains bounded 
as Q varies. For any a >  0 let  Ma(x) :=  (ax1, x2, . . . , xd)

′ . For any law G 
don R and k = 1, 2, . . ., let  ρk := (1 − λ)P + λ(G ◦ M−1), so ρk ∈ D, and  k 

ζk := ρk ◦ M−1
1/k ) +  λG.1/k = (1  − λ)(P ◦ M−1 

ζ
Then by affine equivariance, ζk ∈ D and det Σ(ζk ) =  det  Σ(ρk )/k

2 → 0. Also, 
k converge weakly to ζ := (1 − λ)τ + λG where τ is a law concentrated 

in the hyperplane H := {x1 = 0}. Since  G is arbitrary, now let it have a 
density. Then clearly ζ(J) ≤ 1 − λ for every (d− 1)-dimensional hyperplane 

∗ ∗J . It follows that κ(Σ) ≤ 1 −λ. Letting λ ↑ ε ↑ δC (Σ), we get (κ+ δC )(Σ) ≤ 1. 
In Σ(ζk), the entries in the first row and first column go to 0 and the rest 
remain bounded. Thus, taking a subsequence, we can get convergence of 
Σ(ζk ) to a limit as claimed. 2 

By a similar proof we get a conclusion about location functionals: 
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Proposition 6. Let µ(·) be an affinely equivariant location functional de-
∗fined on a non-empty family of laws on R and suppose that δC (µ(·)) = 1/2. 

1Then the domain of µ(·) cannot be extended to contain any law 
2
(δa + δb) 

with a �= b and be weakly continuous at such a law. 

Proof. We  can  take  a = 0  and  b =  1.  By part of the  proof of Theorem  5 with  
1G := δ1, for any m = 1, 2, . . .  and λm := 
2 
− 1 , there is a sequence ζm,k of 

m 
laws converging weakly as k → ∞ to (1 − λm)δ0 + λmδ1 with µ(ζm,k) → 0. 
Since weak convergence is metrizable, e.g. [11, Theorem 11.3.3], there exist 

1k(m) → ∞  as m → ∞  such that as m → ∞, ζm,k(m) → 
2
(δ0 + δ1) weakly  

and µ(ζm,k(m)) → 0. But symmetrically and by affine equivariance, there 
1also exist laws ηm → 
2
(δ0 + δ1) weakly  with  µ(ηm) → 1. The conclusion 

follows. 2 

A law  on  Rd will be called α-degenerate for α >  0 if it puts mass at least  
α on some (d − 1)-dimensional hyperplane. The first conclusion of the next 
theorem bounds the less-studied replacement (total variation) breakdown 
point at a (1 − γ)-degenerate law where 0 < γ  <  1. The second conclusion 
bounds the usual contamination breakdown point at a general law F0, e.g.  a  
normal law, assuming the functional T is defined and continuous at a related 
(1 − γ)-degenerate law. Such an assumption seems not to hold for many 
location and scatter functionals given in the literature for γ ≤ 1/2, although 

∗only then is the conclusion ε ≤ γ of any interest. The assumption holds for 
M-functionals defined by t distributions with ν degrees of freedom where ν is 
large if γ is small, see Kent and Tyler [21], Dümbgen and Tyler [14]. Hampel 
et al. [17, §5.5] made such an assumption about a ((d−1)/d)-degenerate law 
in proving an upper bound 1/d for the breakdown point of M-functionals of 
location and scatter. For M-functionals of scatter Maronna [26] stated an 
upper bound 1/(d + 1); Tyler [36], using results in Tyler [37], gave a proof, 
without any assumption about α-degenerate laws. The following statement 
extends that of Hampel et al. (but not those of Maronna and Tyler) in that 
it holds for any γ, 0  < γ  <  1, does not use any M-functional property, and 
has a form applying to functionals of location alone. 

Theorem 7. Let T be an affinely equivariant location functional µ or scatter 
functional Σ defined on a domain D of laws on Rd. For  0 ≤ a <  ∞ let Ma 

map Rd into itself via x �→ (ax1, x2, . . . , xd)
′. Let  F0 be any law on Rd and F̃0 

its projection into the linear subspace H := {x : x1 = 0} via M0. Suppose  
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that for some γ ∈ (0, 1) and law ρ on Rd, the  law  P := (1−γ)F̃0+γρ ∈ D and 
∗if T = Σ, Σ(P ) is non-singular, or if T = µ, µ(P ) /∈ H. Then  εR(T,  P  ) ≤ γ. 

If in addition, T (·) is weakly continuous at P on D, and if for all a >  0, 
∗(1 − γ)F0 + γρ ◦ M−1 ∈ D, then  εC (T,  F0) ≤ γ.a 

Proof. By affine equivariance, Pa := P ◦M−1 = (1  − γ)F̃0 + γρ ◦M−1 ∈ Da a 

for each a >  0, and if T = Σ,  det  Σ(Pa) =  a2 det Σ(P ) → +∞ or if T = µ, 
|µ(Pa)| → +∞ as a → +∞. Thus, we get breakdown of T at P by replacing 
γρ by γρ ◦ M−1, remaining in D, so the first conclusion follows. a 

Under the further hypotheses, we have Qa := (1 −γ)F0 ◦M−1 + γρ → P1/a 
weakly as a → +∞, so  T (Qa) → T (P ). Thus, for T = Σ,  

det Σ (1 − γ)F0 + γρ ◦ M−1 = det  Σ(Qa ◦ M−1) → +∞.a a 

For T = µ, |µ(Qa ◦ M−1)| → +∞, and the second conclusion follows. 2a 

For γ = 1/(d + 1), the hypothesis µ(P ) /∈ H of Theorem 7 holds by 
Theorem 1(d) with n = d + 1  and  P = Pd+1 an empirical measure if P ∈ D. 

3 Univariate trimming and the shorth 

Let J be a probability density function on [0, 1] such that J(y) ≡ J(1 − y) 
for 0 ≤ y ≤ 1 and  for  some  α >  0, J(y) > 0 if and only if α < y  <  1 − α. 
Let J be the law on [α, 1 −α] with  density  J . Most  often  J has been taken 
as the uniform distribution U [α, 1 −α], but J can be taken to be continuous 
(and so continuous a.e. for each law, e.g. Stigler [34]) or as smooth as desired 
(e.g. Helmers [18]). 

Let Q be any law on R and F its distribution function. For 0 < y  <  1 let  
F ←(y) := inf{x : F (x) ≥ y}. Let  QJ be the image measure J ◦ (F ←)−1 . 
Then QJ has support in the bounded interval [F ←(α), F  ←(1 − α)], so the 
J-trimmed mean of Q, i.e. the mean of QJ , 

� ∞ � 1 

µJ (Q) :=  xdQJ (x) =  F ←(y)J(y)dy 
−∞ 0 

and the J-trimmed variance of Q, i.e. the variance of QJ , 
� ∞ 

2σ2 
J (Q) :=  x dQJ (x) − µJ (Q)2 

−∞ 
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exist and are finite. One may multiply σ
so that if Q is the standard normal distribution then cσ2(Q) = 1.  J 

2(Q) if desired by a constant 1c >J 

It  is 

straightforward to verify that with or without such a multiplication, the two 
functionals are defined for an arbitrary law Q on R and are affinely equivariant 
location and scatter functionals respectively, weakly continuous at all laws. 
The median of QJ is always the same as the median of Q. 

For the t-functionals to be considered beginning in the next section, weak 
continuity at all laws also holds (after an extension to allow σ = 0) but seems 
considerably harder to prove. So let’s consider some other properties. 

2 
J 

2 
J 

− −In some related methods of trimming, U [α, 1 α] is replaced by U [β, 1 γ] 

and σ The collapse point of σ
is easily seen to be 1 − 2α. For  α close to 1/2, QJ is determined by Q in 
a small interval around its median (if the median is unique), which seems 
undesirable, as evidenced by the collapse point being close to 0. If α >  1/4, 
the collapse point is less than 1/2, which still seems unfortunate. 

where β, γ ≥ 0 and  β + γ = 2α. Here  β and γ can be chosen to minimize the 
variance of the resulting distribution [3], the distance of points in its support 
from the median [23], or otherwise. Location and scale functionals based on 
such trimming will still give collapse point 1 − 2α and can increase δ∗ to 2α,C 

for α <  1/4. Asymmetric trimming works well to prune asymmetric outlier 
contamination from a symmetric true distribution [23], but apparently not 
so well for an asymmetric true distribution. 

There are various multivariate extensions of trimming, e.g. Donoho and 
Gasko [10] and Liu, Parelius and Singh [24]. But, by Theorem 1(d) and 
Theorem 3(b), no method can have the same complete success in defining a 
location functional as in one dimension. 

The shorth and LMS functionals. Let  0  < α  <  1. Let P be a law on R 

and σSh,α
(P ) :=  inf{b − a : P ([a, b]) ≥ α}. Then there are always some 

a, b with P ([a, b]) ≥ α and b − a = h := σSh,α
(P ). Let Iα(P ) be  the  set  of  

such intervals [a, b]. Note that for each such [a, b] and  ε >  0, P ([a, a+ ε]) > 0 
and P ([b − ε, b]) > 0. Let Kα(P ) denote the set of all conditional means � b 
a xdP/P ([a, b]) for [a, b] ∈ Iα(P ) and  Mα(P ) the set of midpoints (a + b)/2. 

Then Kα(P ) and  Mα(P ) are compact, nonempty sets. If Iα(P ) consists of 
just one interval [a, b], let µSh,α

(P ) :=  µ and mSh,α
(P ) :=  (a + b)/2, 

which for α = 1/2 Davies [7, p. 1856] calls the “middle of the shortest half” 
functional; Rousseeuw and Leroy [33, p. 169] call it the “least median of 

∗The functionals µJ both have δ α.= C 
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squares” (LMS) functional, specializing a form of regression. Also, µSh,α
(P ) 

is called the α-shorth of P and µSh(P ) :=  µSh,1/2
(P ) is the  shorth of P . 

The LMS location functional mSh,1/2 
is the location part of the functional 

limit of the univariate case of Rousseeuw’s [30] minimum-volume ellipsoid 
(MVE) location-scatter estimator (µ, Σ), which for a finite sample of size n 
in R

d, finds an ellipsoid {x : (x − µ)′Σ−1(x − µ) ≤ c} of smallest volume 
containing [n/2] + 1 of the observations (or, [(n + d + 1)/2] observations, 
to maximize the finite-sample breakdown point, e.g. Rousseeuw and Leroy 
[33, p. 264]). Davies [5] briefly notes that although an MVE can be selected 
uniquely from its set of possible values, there is a dense set of laws for which 
the MVE is not unique and “no affine equivariant choice can be made.” The 
following fact, then, is to some degree known, but it gives strong forms of 
denseness. Parts (a) and (c) of the following give contamination neighbor-
hoods Nε

C (P ), which are included in total variation neighborhoods and in 
turn in neighborhoods for weak convergence. 

Proposition 8. (a) For any law P on R having a continuous density f and 
any ε >  0, there is a law ζ ∈ NC (P ), also with a continuous density, for ε 

which I1/2(ζ) contains more than one interval and so µSh(ζ) and mSh,1/2
(ζ) 

∗are not defined. Thus δC (mSh,1/2
, P ) =  0, also if contamination neighbor-

hoods are replaced by any larger neighborhoods. 
(b) For any α with 0 < α <  1 there exist laws P symmetric about a point 
m /

µ

∈ Kα(P ). For  such  P there is no way to select µ(α) ∈ Kα(P ), nor as a 
midpoint of any [a, b] ∈ Iα(P ), to get an affine equivariant location functional 

(α)(·). 
(c) Let F0 be any distribution on R having a strictly unimodal density f0 with 
f0(−x) ≡ f0(x). Then for any λ >  0 there is a P ∈ Nλ

C (F0) satisfying (b) 
for α = 1/2. 

Proof. (a)  Let  P have a continuous density f . If  I1/2(P ) contains more than 
one interval we are done, so suppose I1/2(P ) contains just one interval [a, b], 
which we can assume is [0, 1]. Thus 

� x+1 f(u)du < 1/2 for  x �= 0.  Take  any  δx 

with 0 < δ  <  1. Another continuous density g will be defined as follows. Let 
g(x) =  1/2 for  0  ≤ x ≤ 1 and  hδ := (1 − δ)f + δg. Then  

� 1 hδ (x)dx = 1/2.0 

For x >  0 let  
1 − δ 1 

gδ (x) :=  [f(x) − f(x + 1)]  +  . 
δ 2 
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We have (d/dx) 
� x+1 f(u)du = f(x + 1)  − f(x) =  0  when  x = 0,  so  f(0) = x 

f(1). There is a γ >  0 such that γ <  1/2 and  (1  − δ)[f(u + 1)  − f(u)] ≤ δ/2 
for 0 ≤ u ≤ γ. Choose  a  β >  0 small enough so that gδ (u) > 0 for  0  ≤ u ≤ β 
and 

� 
1
1+β gδ (u − 1)du < γ/2. Define g(1 + x) :=  gδ (x) for  0  < x  ≤ β/2, 

g(1 + x) :=  2(β − x)β−1gδ (x) < gδ (x) for  β/2 < x  ≤ β, and  g(1 + x) := 0  
for x >  β. For  0  < x  < β/2 we have  

� 1+x 1d 
hδ (u)du = (1  − δ)[f(x + 1)  − f(x)] + δ gδ (x) − = 0,

dx x 2 
� 1+x so hδ (u)du = 1/2 for  0  ≤ x ≤ β/2. For β/2 < x  ≤ β we then have by x 

definition of g(1 + x) 

h
� 1+x 

δ (u)du < 1/2. (4) 
x 

For x > γ, 
� 
x 
1+x g(u)du < 1/2 (for  x ≤ 1 or  x >  1), so (4) holds. To � 1+βprove (4) for β <  x  ≤ γ it suffices to show 

� 1+x hδ (u)du ≤ hδ (u)du, or  x β 

[ x − 
� 1+x x]hδ (u) ≥ 0, or β (1 − δ)[f(u) − f(1 + u)] + δ du ≥ 0, which holds β 1+β 2

by choice of γ. � 1+βSince 
� 
0 
∞ g(u)du = g(u)du < 3/4 by  choice of  β and γ, we can and do 0 

define g(u) for  u <  0 to be nonnegative and continuous at 0 with g(u) < 1/2 � ∞for all u <  0 such that −∞ g(u)du = 1.  Then  g and hδ are both probability 
densities. For any x <  0, 

� 1+x hδ (u)du < 1 
2
(1 − δ + δ). So (4) holds for all x 

x /∈ [0, β/2] while 
� 1+x hδ (u)du = 1/2 for  0  ≤ x ≤ β/2. Thus for ζ with x 

density hδ , we  have  σSh,1/2
(ζ) = 1  and  I1/2(ζ) =  {[x, x + 1] :  0  ≤ x ≤ β/2}. � 1+xNow 

� 1+x uhδ (u)du/ hδ (u)du = 2  
� 1+x uhδ (u)du is a strictly increasing x x x 

function of x for 0 ≤ x ≤ β/2, so (a) is proved. 
For (b), if P exists, the conclusions follow from Theorem 1(c). To show 

1P exists, for 0 < α  ≤ 1/2, let P = 
2
(U [0, 1] + U [3, 4]). For 1/2 < α <  1, 

let P = (2α − 1)δ0 + (1  − α)(δ−1 + δ1). Then m = 0,  σSh,α
(P ) = 1, and 

0 /∈ Kα(P ) =  {±(1 − α)}, proving (b). 
For (c), I1/2(F0) contains just one interval, namely [−ξ, ξ], where ξ is 

the upper quartile of F0. For any δ >  0 let  Qδ be the law with density fδ 

where fδ (−x) ≡ fδ (x), fδ (ξ + t) =  t/δ2 for 0 ≤ t ≤ δ and fδ (x) = 0  for  
all other x >  0. For fixed λ ∈ (0, 1) and Pδ := (1 − λ)F0 + λQδ , the  √ 
unique interval [−η, η] with  Pδ ([−η, η]) = 1/2 has  length  2ξ + 2δ + o(δ) as  
δ ↓ 0. But Pδ ([−ξ, ξ + δ]) > 1/2 for a shorter interval, proving (c) and the 
proposition. 2 
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down location and dispersion estimator. J. Multivariate Analysis 40, 
311-327. 

[7] Davies, P. L. (1993). Aspects of robust linear regression. Ann. Statist. 
21, 1843-1899. 

[8] Davies, [P.] L. (1994). Desirable properties, breakdown and efficiency 
in the linear regression model. Statistics and Probability Letters 19, 
361-370. 

[9] Davies, P. L. (1998). On locally uniformly linearizable high breakdown 
location and scale functionals. Ann. Statist. 26, 1103-1125. 

[10] Donoho, D. L., and Gasko, M. (1992). Breakdown properties of location 
estimates based on halfspace depth and projected outlyingness. Ann. 
Statist. 20, 1803-1827. 

[11] Dudley, R. M. (2002). Real Analysis and Probability, 2d ed. Cambridge 
University Press. 

20 
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