18.445 Homework 4, Due April 22th, 2015

Exercise 1. Let X, Y be two random variables on $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\mathscr{A} \subset \mathscr{F}$ be a sub- σ-algebra. The random variables X and Y are said to be independent conditionally on \mathscr{A} is for every non-negative measurable functions f, g, we have

$$
\mathbb{E}[f(X) g(Y) \mid \mathscr{A}]=\mathbb{E}[f(X) \mid \mathscr{A}] \times \mathbb{E}[g(Y) \mid \mathscr{A}] \quad \text { a.s. }
$$

Show that X, Y are independent conditionally on \mathscr{A} if and only if for every non-negative \mathscr{A}-measurable random variable Z, and every non-negative measurable functions f, g, we have

$$
\mathbb{E}[f(X) g(Y) Z]=\mathbb{E}[f(X) Z \mathbb{E}[g(Y) \mid \mathscr{A}]] .
$$

Exercise 2. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale.
(1) Suppose that T is a stopping time, show that X^{T} is also a martingale. In particular, $\mathbb{E}\left[X_{T \wedge n}\right]=\mathbb{E}\left[X_{0}\right]$.
(2) Suppose that $S \leq T$ are bounded stopping times, show that $\mathbb{E}\left[X_{T} \mid \mathscr{F}_{S}\right]=X_{S}$, a.s. In particular, $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{S}\right]$.
(3) Suppose that there exists an integrable random variable Y such that $\left|X_{n}\right| \leq Y$ for all n, and T is a stopping time which is finite a.s., show that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.
(4) Suppose that X has bounded increments, i.e. $\exists M>0$ such that $\left|X_{n+1}-X_{n}\right| \leq M$ for all n, and T is a stopping time with $\mathbb{E}[T]<\infty$, show that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.

Exercise 3. Let $X=\left(X_{n}\right)_{n \geq 0}$ be Gambler's ruin with state space $\Omega=\{0,1,2, \ldots, N\}$:

$$
X_{0}=k, \quad \mathbb{P}\left[X_{n+1}=X_{n}+1 \mid X_{n}\right]=\mathbb{P}\left[X_{n+1}=X_{n}-1 \mid X_{n}\right]=1 / 2, \quad \tau=\min \left\{n: X_{n}=0 \text { or } N\right\} .
$$

(1) Show that $Y=\left(Y_{n}:=X_{n}^{2}-n\right)_{n \geq 0}$ is a martingale.
(2) Show that Y has bounded increments.
(3) Show that $\mathbb{E}[\tau]<\infty$.
(4) Show that $\mathbb{E}[\tau]=k(N-k)$.

Exercise 4. Let $X=\left(X_{n}\right)_{n \geq 0}$ be the simple random walk on \mathbb{Z}.
(1) Show that $\left(Y_{n}:=X_{n}^{3}-3 n X_{n}\right)_{n \geq 0}$ is a martingale.
(2) Let τ be the first time that the walker hits either 0 or N. Show that, for $0 \leq k \leq N$, we have

$$
\mathbb{E}_{k}\left[\tau \mid X_{\tau}=N\right]=\frac{N^{2}-k^{2}}{3}
$$

Exercise 5. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space with filtration $\left(\mathscr{F}_{n}\right)_{n \geq 0}$.
(1) For any $m, m^{\prime} \geq n$ and $A \in \mathscr{F} n$, show that $T=m 1_{A}+m^{\prime} 1_{A^{c}}$ is a stopping time.
(2) Show that an adapted process $\left(X_{n}\right)_{n \geq 0}$ is a martingale if and only if it is integrable, and for every bounded stopping time T, we have $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.

Exercise 6. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale in L^{2}.
(1) Show that its increments $\left(X_{n+1}-X_{n}\right)_{n \geq 0}$ are pairwise orthogonal, i.e. for all $n \neq m$, we have

$$
\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)\left(X_{m+1}-X_{m}\right)\right]=0
$$

(2) Show that X is bounded in L^{2} if and only if

$$
\sum_{n \geq 0} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]<\infty .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

