18.445 Homework 4, Due April 22th, 2015

Exercise 1. Let X, Y be two random variables on $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\mathscr{A} \subset \mathscr{F}$ be a sub- σ -algebra. The random variables X and Y are said to be independent conditionally on \mathscr{A} is for every non-negative measurable functions f, g, we have

$$\mathbb{E}[f(X)g(Y) \mid \mathscr{A}] = \mathbb{E}[f(X) \mid \mathscr{A}] \times \mathbb{E}[g(Y) \mid \mathscr{A}] \quad a.s.$$

Show that *X*, *Y* are independent conditionally on \mathscr{A} if and only if for every non-negative \mathscr{A} -measurable random variable *Z*, and every non-negative measurable functions *f*, *g*, we have

$$\mathbb{E}[f(X)g(Y)Z] = \mathbb{E}[f(X)Z\mathbb{E}[g(Y) \,|\, \mathscr{A}]].$$

Exercise 2. Let $X = (X_n)_{n>0}$ be a martingale.

- (1) Suppose that *T* is a stopping time, show that X^T is also a martingale. In particular, $\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_0]$.
- (2) Suppose that $S \leq T$ are bounded stopping times, show that $\mathbb{E}[X_T | \mathscr{F}_S] = X_S, a.s.$ In particular, $\mathbb{E}[X_T] = \mathbb{E}[X_S]$.
- (3) Suppose that there exists an integrable random variable *Y* such that $|X_n| \le Y$ for all *n*, and *T* is a stopping time which is finite a.s., show that $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.
- (4) Suppose that *X* has bounded increments, i.e. $\exists M > 0$ such that $|X_{n+1} X_n| \leq M$ for all *n*, and *T* is a stopping time with $\mathbb{E}[T] < \infty$, show that $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Exercise 3. Let $X = (X_n)_{n \ge 0}$ be Gambler's ruin with state space $\Omega = \{0, 1, 2, ..., N\}$:

$$X_0 = k$$
, $\mathbb{P}[X_{n+1} = X_n + 1 | X_n] = \mathbb{P}[X_{n+1} = X_n - 1 | X_n] = 1/2$, $\tau = \min\{n : X_n = 0 \text{ or } N\}$.

- (1) Show that $Y = (Y_n := X_n^2 n)_{n \ge 0}$ is a martingale.
- (2) Show that *Y* has bounded increments.
- (3) Show that $\mathbb{E}[\tau] < \infty$.
- (4) Show that $\mathbb{E}[\tau] = k(N-k)$.

Exercise 4. Let $X = (X_n)_{n>0}$ be the simple random walk on \mathbb{Z} .

- (1) Show that $(Y_n := X_n^3 3nX_n)_{n \ge 0}$ is a martingale.
- (2) Let τ be the first time that the walker hits either 0 or *N*. Show that, for $0 \le k \le N$, we have

$$\mathbb{E}_k[\tau \,|\, X_\tau = N] = \frac{N^2 - k^2}{3}.$$

Exercise 5. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space with filtration $(\mathscr{F}_n)_{n\geq 0}$.

- (1) For any $m, m' \ge n$ and $A \in \mathscr{F}_n$, show that $T = m \mathbf{1}_A + m' \mathbf{1}_{A^c}$ is a stopping time.
- (2) Show that an adapted process $(X_n)_{n\geq 0}$ is a martingale if and only if it is integrable, and for every bounded stopping time *T*, we have $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Exercise 6. Let $X = (X_n)_{n \ge 0}$ be a martingale in L^2 .

(1) Show that its increments $(X_{n+1} - X_n)_{n \ge 0}$ are pairwise orthogonal, i.e. for all $n \ne m$, we have

$$\mathbb{E}[(X_{n+1}-X_n)(X_{m+1}-X_m)]=0.$$

(2) Show that X is bounded in L^2 if and only if

$$\sum_{n\geq 0}\mathbb{E}[(X_{n+1}-X_n)^2]<\infty.$$

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.