### 18.445 HOMEWORK 2 SOLUTIONS

Exercise 4.2. Let $\left(a_{n}\right)$ be a bounded sequence. If, for a sequence of integers ( $n_{k}$ ) satisfying

$$
\lim _{k \rightarrow \infty} \frac{n_{k}}{n_{k+1}}=1
$$

we have

$$
\lim _{k \rightarrow \infty} \frac{a_{1}+\cdots+a_{n_{k}}}{n_{k}}=a
$$

then

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=a
$$

Proof. For $n_{k} \leq n<n_{k+1}$, we can write

$$
\begin{align*}
\frac{a_{1}+\cdots+a_{n}}{n} & =\frac{a_{1}+\cdots+a_{n_{k}}}{n}+\frac{a_{n_{k}+1}+\cdots+a_{n}}{n} \\
& =\frac{a_{1}+\cdots+a_{n_{k}}}{n_{k}} \frac{n_{k}}{n}+\frac{a_{n_{k}+1}+\cdots+a_{n}}{n-n_{k}} \frac{n-n_{k}}{n} \tag{1}
\end{align*}
$$

As $n \rightarrow \infty$ and $k \rightarrow \infty$, by assumption

$$
\begin{equation*}
\frac{a_{1}+\cdots+a_{n_{k}}}{n_{k}} \rightarrow a . \tag{2}
\end{equation*}
$$

Since $\frac{n_{k}}{n_{k+1}} \leq \frac{n_{k}}{n} \leq 1$ and $\frac{n_{k}}{n_{k+1}} \rightarrow 1$, we have

$$
\begin{equation*}
\frac{n_{k}}{n} \rightarrow 1 \tag{3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{n-n_{k}}{n} \rightarrow 0 \tag{4}
\end{equation*}
$$

Also, $\left(a_{n}\right)$ is bounded, so there exists constant $C>0$ such that

$$
\begin{equation*}
\left|\frac{a_{n_{k}+1}+\cdots+a_{n}}{n-n_{k}}\right| \leq C \tag{5}
\end{equation*}
$$

Combining (2), (3), (4) and (5), we conclude that the formula in (1) converges to $a$ as $n \rightarrow \infty$.

Exercise 4.3. Let $P$ be the transition matrix of a Markov chain with state space $\Omega$ and let $\mu$ and $\nu$ be any two distributions on $\Omega$. Prove that

$$
\|\mu P-\nu P\|_{\mathrm{TV}} \leq\|\mu-\nu\|_{\mathrm{TV}}
$$

(This in particular shows that $\left\|\mu P^{t+1}-\pi\right\|_{\mathrm{TV}} \leq\left\|\mu P^{t}-\pi\right\|_{\mathrm{TV}}$, that is, advancing the chain can only move it closer to stationary.)

Proof. We have

$$
\begin{aligned}
\|\mu P-\nu P\|_{\mathrm{TV}} & =\frac{1}{2} \sum_{x \in \Omega}|\mu P(x)-\nu P(x)| \\
& =\frac{1}{2} \sum_{x \in \Omega}\left|\sum_{y \in \Omega}(\mu(y)-\nu(y)) P(y, x)\right| \\
& \leq \frac{1}{2} \sum_{x, y \in \Omega} P(y, x)|\mu(y)-\nu(y)| \\
& =\frac{1}{2} \sum_{y \in \Omega}|\mu(y)-\nu(y)| \sum_{x \in \Omega} P(y, x) \\
& =\frac{1}{2} \sum_{y \in \Omega}|\mu(y)-\nu(y)| \\
& =\|\mu-\nu\|_{\mathrm{TV}}
\end{aligned}
$$

Exercise 4.4. Let $P$ be he transition matrix of a Markov chain with stationary distribution $\pi$. Prove that for any $t \geq 0$,

$$
d(t+1) \leq d(t)
$$

where $d(t)$ is defined by (4.22).
Proof. By Exercise 4.1 (see Page 329 of the book for its proof),

$$
d(t)=\sup _{\mu \in \mathcal{P}}\left\|\mu P^{t}-\pi\right\|_{\mathrm{TV}}
$$

where $\mathcal{P}$ is the set of probability distributions on $\Omega$. By the remark in the statement of Exercise 4.3,

$$
\left\|\mu P^{t+1}-\pi\right\|_{\mathrm{TV}} \leq\left\|\mu P^{t}-\pi\right\|_{\mathrm{TV}}
$$

Therefore, we have

$$
d(t+1) \leq d(t)
$$

Exercise 5.1. A mild generalization of Theorem 5.2 can be used to give an alternative proof of the Convergence Theorem.
(a). Show that when $\left(X_{t}, Y_{t}\right)$ is a coupling satisfying (5.2) for which $X_{0} \sim \mu$ and $Y_{0} \sim \nu$, then

$$
\begin{equation*}
\left\|\mu P^{t}-\nu P^{t}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left[\tau_{\text {couple }}>t\right] \tag{6}
\end{equation*}
$$

Proof. Note that $\left(X_{t}, Y_{t}\right)$ is a coupling of $\mu P^{t}$ and $\nu P^{t}$. By Proposition 4.7 and (5.2),

$$
\left\|\mu P^{t}-\nu P^{t}\right\|_{\mathrm{TV}} \leq \mathbb{P}_{x, y}\left[X_{t} \neq Y_{t}\right]=\mathbb{P}_{x, y}\left[\tau_{\text {couple }}>t\right]
$$

(b). If in (a) we take $\nu=\pi$, where $\pi$ is the stationary distribution, then (by definition) $\pi P^{t}=\pi$, and (6) bounds the difference between $\mu P^{t}$ and $\pi$. The only thing left to check is that there exists a coupling guaranteed to coalesce, that is, for which $\mathbb{P}\left[\tau_{\text {couple }}<\infty\right]=1$. Show that if the chains $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ are taken to be independent of one another, then they are assured to eventually meet.

Proof. Since $P$ is aperiodic and irreducible, by Proposition 1.7, there is an integer $r$ such that $P^{r}(x, y)>0$ for all $x, y \in \Omega$. We can find $\varepsilon>0$ such that $\varepsilon<P^{r}(x, y)$ for all $x, y \in \Omega$. Hence for a fixed $z \in \Omega$, wherever $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ start from, they meet at $z$ after $r$ steps with probability at least $\varepsilon^{2}$ as they are independent. If they are not at $z$ after $r$ steps (which has probability at most $1-\varepsilon^{2}$ ), then they meet at $z$ after another $r$ steps with probability at least $\varepsilon^{2}$. Hence they have not met at $z$ after $2 r$ steps with probability at most $\left(1-\varepsilon^{2}\right)^{2}$. Inductively, we see that $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ have not met at $z$ after $n r$ steps with probability at most $\left(1-\varepsilon^{2}\right)^{n}$. It follows that $\mathbb{P}\left[\tau_{\text {couple }}>n r\right] \leq\left(1-\varepsilon^{2}\right)^{n}$ which goes to 0 as $n \rightarrow \infty$. Thus $\mathbb{P}\left[\tau_{\text {couple }}<\infty\right]=1$.

Exercise 5.3. Show that if $X_{1}, X_{2}, \ldots$ are independent and each have mean $\mu$ and if $\tau$ is a $\mathbb{Z}^{+}$-valued random variable independent of all the $X_{i}$ 's, then

$$
\mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right]=\mu \mathbb{E}[\tau]
$$

Proof. Since $\tau$ is independent of $\left(X_{i}\right)$,

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{\tau} X_{i}\right] & =\sum_{n=1}^{\infty} \mathbb{P}[\tau=n] \mathbb{E}\left[\sum_{i=1}^{n} X_{i} \mid \tau=n\right] \\
& =\sum_{n=1}^{\infty} \mathbb{P}[\tau=n] \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\sum_{n=1}^{\infty} \mathbb{P}[\tau=n] n \mu \\
& =\mu \mathbb{E}[\tau]
\end{aligned}
$$

Exercise 6.2. Consider the top-to-random shuffle. Show that the time until the card initially one card from the bottom rises to the top, plus one more move, is a strong stationary time, and find its expectation.

Proof. Let this time be denoted by $\tau$. We consider the top-to-random shuffle chain $\left(X_{t}\right)$ as a random walk on $\mathcal{S}_{n}$. Let $\left(Z_{t}\right)$ be an i.i.d. sequence each having the uniform distribution on the locations to insert the top card. Let $f\left(X_{t-1}, Z_{t}\right)$ be the function defined by inserting the top card of $X_{t-1}$ at the the position determined by $Z_{t}$. Hence $X_{0}$ and $X_{t}=f\left(X_{t-1}, Z_{t}\right)$ define the chain inductively.

Note that $\tau=t$ if and only if there exists a subsequence $Z_{t_{1}}, \ldots, Z_{t_{n-2}}$ where $t_{1}<\cdots<t_{n-2}=t-1$ such that $Z_{t_{i}}$ chooses one of the bottom $i+1$ locations to insert the top card. Hence $\mathbb{1}_{\{\tau=t\}}$ is a function of $\left(Z_{1}, \ldots, Z_{t}\right)$, so $\tau$ is a stopping time for $\left(Z_{t}\right)$. That is, $\tau$ is a randomized stopping time for $\left(X_{t}\right)$.

Next, denote by $\mathcal{C}$ the card initially one card from the bottom. We show inductively that at a time $t$ the $k$ ! possible orderings of the $k$ cards below $\mathcal{C}$ are equally likely. At the beginning, there is only the bottom card below $\mathcal{C}$. When we have $k$ cards below $\mathcal{C}$ and insert a top card below $\mathcal{C}$, since the insertion is uniformly random, the possible orderings of the $k+1$ cards below $\mathcal{C}$ after insertion are equally likely. Therefore, when $\mathcal{C}$ is at the top, the possible orderings of the remaining $n-1$ cards are uniformly distributed. After we make one more move, the order of all $n$ cards is uniform over all possible arrangements. That is, $X_{\tau}$ has the stationary distribution $\pi$. In particular, the above process shows that the distribution of $X_{\tau}$ is independent of $\tau$. Hence we conclude that $\tau$ is a strong stationary time.

Finally, we compute the expectation of $\tau$. For $1 \leq i \leq n-2$, when $\mathbb{C}$ is $i$ cards from the bottom, then the probability that the top card is inserted below $\mathbb{C}$ is $\frac{i+1}{n}$. Hence if $\tau_{i}$ denotes the time it takes for $\mathbb{C}$ to move from $i$ cards from the bottom to $i+1$ cards from the bottom, then $\mathbb{E}\left[\tau_{i}\right]=\frac{n}{i+1}$. It is easily seen that $\tau=\tau_{1}+\cdots+\tau_{n-2}+1$, so

$$
\mathbb{E}[\tau]=\mathbb{E}\left[1+\sum_{i=1}^{n-2} \tau_{i}\right]=1+\sum_{i=1}^{n-2} \frac{n}{i+1}=n \sum_{i=1}^{n-1} \frac{1}{i+1}
$$

Exercise 6.6. (Wald's Identity). Let $\left(Y_{t}\right)$ be a sequence of independent and identically distributed random variables such that $\mathbb{E}\left[\left|Y_{t}\right|\right]<\infty$.
(a). Show that if $\tau$ is a random time so that the event $\{\tau \geq t\}$ is independent of $Y_{t}$ and $\mathbb{E}[\tau]<\infty$, then

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{\tau} Y_{t}\right]=\mathbb{E}[\tau] \mathbb{E}\left[Y_{1}\right] \tag{7}
\end{equation*}
$$

Hint: Write $\sum_{t=1}^{\tau} Y_{t}=\sum_{t=1}^{\infty} Y_{t} \mathbb{1}_{\{\tau \geq t\}}$. First consider the case where $Y_{t} \geq 0$.

Proof. Using the monotone convergence theorem and that $\{\tau \geq t\}$ is independent of $Y_{t}$, we see that

$$
\mathbb{E}\left[\sum_{t=1}^{\tau}\left|Y_{t}\right|\right]=\sum_{t=1}^{\infty} \mathbb{E}\left[\left|Y_{t}\right| \mathbb{1}_{\{\tau \geq t\}}\right]=\mathbb{E}\left[\left|Y_{1}\right|\right] \sum_{t=1}^{\infty} \mathbb{P}[\tau \geq t]=\mathbb{E}\left[\left|Y_{1}\right|\right] \mathbb{E}[\tau]<\infty
$$

Therefore, we can then apply the dominated convergence theorem to get that

$$
\mathbb{E}\left[\sum_{t=1}^{\tau} Y_{t}\right]=\sum_{t=1}^{\infty} \mathbb{E}\left[Y_{t} \mathbb{1}_{\{\tau \geq t\}}\right]=\mathbb{E}\left[Y_{1}\right] \sum_{t=1}^{\infty} \mathbb{P}[\tau \geq t]=\mathbb{E}\left[Y_{1}\right] \mathbb{E}[\tau]
$$

(b). Let $\tau$ be a stopping time for the sequence $\left(Y_{t}\right)$. Show that $\{\tau \geq t\}$ is independent of $Y_{t}$, so (7) holds provided that $\mathbb{E}[\tau]<\infty$.

Proof. Since $\tau$ is a stopping time, $\mathbb{1}_{\{\tau \geq t\}}=\mathbb{1}_{\{\tau \leq t-1\}^{c}}$ is a function of $Y_{0}, \ldots, Y_{t-1}$. Since $Y_{t}$ is independent of $Y_{0}, \ldots, Y_{t-1}$, we conclude that $\{\tau \geq t\}$ is independent of $Y_{t}$.

Exercise 7.1. Let $\mathbf{X}_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)$ be the position of the lazy random walker on the hypercube $\{0,1\}^{n}$, started at $\mathbf{X}_{0}=\mathbf{1}=(1, \ldots, 1)$. Show that the covariance between $X_{t}^{i}$ and $X_{t}^{j}$ is negative. Conclude that if $W\left(\mathbf{X}_{t}\right)=\sum_{i=1}^{n} X_{t}^{i}$, then $\operatorname{Var}\left(W\left(\mathbf{X}_{t}\right)\right) \leq n / 4$.

Hint: It may be easier to consider the variables $Y_{t}^{i}=2 X_{t}^{i}-1$.

Proof. Let $Y_{t}^{i}=2 X_{t}^{i}-1$. Then $\operatorname{Cov}\left(Y_{t}^{i}, Y_{t}^{j}\right)=4 \operatorname{Cov}\left(X_{t}^{i}, X_{t}^{j}\right)$, so it suffices to show that $\operatorname{Cov}\left(Y_{t}^{i}, Y_{t}^{j}\right)<0$ for $i \neq j$ and $t>0$. If the $i$ th coordinate is chosen in the first $t$ steps, then the conditional expectation of $Y_{t}^{i}$ is 0 . Hence

$$
\mathbb{E}\left[Y_{t}^{i}\right]=\left(1-\frac{1}{n}\right)^{t} \quad \text { and } \quad \mathbb{E}\left[Y_{t}^{i} Y_{t}^{j}\right]=\left(1-\frac{2}{n}\right)^{t}
$$

It follows that for $t>0$,

$$
\operatorname{Cov}\left(Y_{t}^{i}, Y_{t}^{j}\right)=\mathbb{E}\left[Y_{t}^{i} Y_{t}^{j}\right]-\mathbb{E}\left[Y_{t}^{i}\right] \mathbb{E}\left[Y_{t}^{j}\right]=\left(1-\frac{2}{n}\right)^{t}-\left(1-\frac{1}{n}\right)^{2 t}<0
$$

On the other hand,

$$
4 \operatorname{Var}\left(X_{t}^{i}\right)=\operatorname{Var}\left(Y_{t}^{i}\right)=\mathbb{E}\left[\left(Y_{t}^{i}\right)^{2}\right]-\mathbb{E}\left[Y_{t}^{i}\right]^{2}=1-\left(1-\frac{1}{n}\right)^{2 t} \leq 1
$$

Therefore,

$$
\operatorname{Var}\left(W\left(\mathbf{X}_{t}\right)\right)=\operatorname{Var}\left(\sum_{i=1}^{n} X_{t}^{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{t}^{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{t}^{i}, X_{t}^{j}\right) \leq \frac{n}{4}
$$

Exercise 7.2. Show that $Q\left(S, S^{c}\right)=Q\left(S^{c}, S\right)$ for any $S \subset \Omega$. (This is easy in the reversible case, but holds generally.)

Proof. We have

$$
\begin{aligned}
Q\left(S, S^{c}\right) & =\sum_{x \in S} \sum_{y \in S^{c}} \pi(x) P(x, y) \\
& =\sum_{y \in S^{c}}\left(\sum_{x \in \Omega} \pi(x) P(x, y)-\sum_{x \in S^{c}} \pi(x) P(x, y)\right) \\
& =\sum_{y \in S^{c}} \sum_{x \in \Omega} \pi(x) P(x, y)-\sum_{x \in S^{c}} \pi(x) \sum_{y \in S^{c}} P(x, y) \\
& =\sum_{y \in S^{c}} \pi(y)-\sum_{x \in S^{c}} \pi(x)\left(1-\sum_{y \in S} P(x, y)\right) \\
& =\sum_{y \in S^{c}} \pi(y)-\sum_{x \in S^{c}} \pi(x)+\sum_{x \in S^{c}} \sum_{y \in S} \pi(x) P(x, y) \\
& =\sum_{x \in S^{c}} \sum_{y \in S} \pi(x) P(x, y) \\
& =Q\left(S^{c}, S\right)
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

