18.445 HOMEWORK 2 SOLUTIONS

Exercise 4.2. Let (a_n) be a bounded sequence. If, for a sequence of integers (n_k) satisfying

$$\lim_{k \to \infty} \frac{n_k}{n_{k+1}} = 1,$$

we have

$$\lim_{k \to \infty} \frac{a_1 + \dots + a_{n_k}}{n_k} = a,$$

then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$$

Proof. For $n_k \leq n < n_{k+1}$, we can write

$$\frac{a_1 + \dots + a_n}{n} = \frac{a_1 + \dots + a_{n_k}}{n} + \frac{a_{n_k+1} + \dots + a_n}{n}$$
$$= \frac{a_1 + \dots + a_{n_k}}{n_k} \frac{n_k}{n} + \frac{a_{n_k+1} + \dots + a_n}{n - n_k} \frac{n - n_k}{n}.$$
(1)

As $n \to \infty$ and $k \to \infty$, by assumption

$$\frac{a_1 + \dots + a_{n_k}}{n_k} \to a. \tag{2}$$

Since $\frac{n_k}{n_{k+1}} \leq \frac{n_k}{n} \leq 1$ and $\frac{n_k}{n_{k+1}} \to 1$, we have

$$\frac{n_k}{n} \to 1. \tag{3}$$

It follows that

$$\frac{n-n_k}{n} \to 0. \tag{4}$$

Also, (a_n) is bounded, so there exists constant C > 0 such that

$$\left|\frac{a_{n_k+1}+\dots+a_n}{n-n_k}\right| \le C.$$
(5)

Combining (2), (3), (4) and (5), we conclude that the formula in (1) converges to a as $n \to \infty$.

Exercise 4.3. Let P be the transition matrix of a Markov chain with state space Ω and let μ and ν be any two distributions on Ω . Prove that

$$\|\mu P - \nu P\|_{\mathrm{TV}} \le \|\mu - \nu\|_{\mathrm{TV}}$$

(This in particular shows that $\|\mu P^{t+1} - \pi\|_{TV} \le \|\mu P^t - \pi\|_{TV}$, that is, advancing the chain can only move it closer to stationary.)

Date: March 8, 2015. Prepared by Cheng Mao.

Proof. We have

$$\begin{split} \|\mu P - \nu P\|_{\mathrm{TV}} &= \frac{1}{2} \sum_{x \in \Omega} |\mu P(x) - \nu P(x)| \\ &= \frac{1}{2} \sum_{x \in \Omega} \left| \sum_{y \in \Omega} (\mu(y) - \nu(y)) P(y, x) \right| \\ &\leq \frac{1}{2} \sum_{x, y \in \Omega} P(y, x) |\mu(y) - \nu(y)| \\ &= \frac{1}{2} \sum_{y \in \Omega} |\mu(y) - \nu(y)| \sum_{x \in \Omega} P(y, x) \\ &= \frac{1}{2} \sum_{y \in \Omega} |\mu(y) - \nu(y)| \\ &= \|\mu - \nu\|_{\mathrm{TV}}. \end{split}$$

Exercise 4.4. Let P be he transition matrix of a Markov chain with stationary distribution π . Prove that for any $t \ge 0$,

$$d(t+1) \le d(t),$$

where d(t) is defined by (4.22).

Proof. By Exercise 4.1 (see Page 329 of the book for its proof),

$$d(t) = \sup_{\mu \in \mathcal{P}} \|\mu P^t - \pi\|_{\mathrm{TV}}$$

where \mathcal{P} is the set of probability distributions on Ω . By the remark in the statement of Exercise 4.3,

$$\|\mu P^{t+1} - \pi\|_{\rm TV} \le \|\mu P^t - \pi\|_{\rm TV}$$

Therefore, we have

$$d(t+1) \le d(t).$$

Exercise 5.1. A mild generalization of Theorem 5.2 can be used to give an alternative proof of the Convergence Theorem.

(a). Show that when (X_t, Y_t) is a coupling satisfying (5.2) for which $X_0 \sim \mu$ and $Y_0 \sim \nu$, then

$$\|\mu P^t - \nu P^t\|_{\mathrm{TV}} \le \mathbb{P}[\tau_{\mathrm{couple}} > t].$$
(6)

Proof. Note that (X_t, Y_t) is a coupling of μP^t and νP^t . By Proposition 4.7 and (5.2),

$$\mu P^t - \nu P^t \|_{\mathrm{TV}} \le \mathbb{P}_{x,y}[X_t \neq Y_t] = \mathbb{P}_{x,y}[\tau_{\mathrm{couple}} > t].$$

(b). If in (a) we take $\nu = \pi$, where π is the stationary distribution, then (by definition) $\pi P^t = \pi$, and (6) bounds the difference between μP^t and π . The only thing left to check is that there exists a coupling guaranteed to coalesce, that is, for which $\mathbb{P}[\tau_{\text{couple}} < \infty] = 1$. Show that if the chains (X_t) and (Y_t) are taken to be independent of one another, then they are assured to eventually meet.

Proof. Since P is aperiodic and irreducible, by Proposition 1.7, there is an integer r such that $P^r(x, y) > 0$ for all $x, y \in \Omega$. We can find $\varepsilon > 0$ such that $\varepsilon < P^r(x, y)$ for all $x, y \in \Omega$. Hence for a fixed $z \in \Omega$, wherever (X_t) and (Y_t) start from, they meet at z after r steps with probability at least ε^2 as they are independent. If they are not at z after r steps (which has probability at most $1 - \varepsilon^2$), then they meet at z after another r steps with probability at least ε^2 . Hence they have not met at z after 2r steps with probability at most $(1 - \varepsilon^2)^2$. Inductively, we see that (X_t) and (Y_t) have not met at z after nr steps with probability at most $(1 - \varepsilon^2)^n$. It follows that $\mathbb{P}[\tau_{\text{couple}} > nr] \leq (1 - \varepsilon^2)^n$ which goes to 0 as $n \to \infty$. Thus $\mathbb{P}[\tau_{\text{couple}} < \infty] = 1$. \Box **Exercise 5.3.** Show that if X_1, X_2, \ldots are independent and each have mean μ and if τ is a \mathbb{Z}^+ -valued random variable independent of all the X_i 's, then

$$\mathbb{E}[\sum_{i=1}^{\tau} X_i] = \mu \mathbb{E}[\tau]$$

Proof. Since τ is independent of (X_i) ,

$$\mathbb{E}[\sum_{i=1}^{\tau} X_i] = \sum_{n=1}^{\infty} \mathbb{P}[\tau = n] \mathbb{E}[\sum_{i=1}^{n} X_i | \tau = n]$$
$$= \sum_{n=1}^{\infty} \mathbb{P}[\tau = n] \sum_{i=1}^{n} \mathbb{E}[X_i]$$
$$= \sum_{n=1}^{\infty} \mathbb{P}[\tau = n] n \mu$$
$$= \mu \mathbb{E}[\tau].$$

Exercise 6.2. Consider the top-to-random shuffle. Show that the time until the card initially one card from the bottom rises to the top, plus one more move, is a strong stationary time, and find its expectation.

Proof. Let this time be denoted by τ . We consider the top-to-random shuffle chain (X_t) as a random walk on S_n . Let (Z_t) be an i.i.d. sequence each having the uniform distribution on the locations to insert the top card. Let $f(X_{t-1}, Z_t)$ be the function defined by inserting the top card of X_{t-1} at the the position determined by Z_t . Hence X_0 and $X_t = f(X_{t-1}, Z_t)$ define the chain inductively.

Note that $\tau = t$ if and only if there exists a subsequence $Z_{t_1}, \ldots, Z_{t_{n-2}}$ where $t_1 < \cdots < t_{n-2} = t-1$ such that Z_{t_i} chooses one of the bottom i+1 locations to insert the top card. Hence $\mathbb{1}_{\{\tau=t\}}$ is a function of (Z_1, \ldots, Z_t) , so τ is a stopping time for (Z_t) . That is, τ is a randomized stopping time for (X_t) .

Next, denote by C the card initially one card from the bottom. We show inductively that at a time t the k! possible orderings of the k cards below C are equally likely. At the beginning, there is only the bottom card below C. When we have k cards below C and insert a top card below C, since the insertion is uniformly random, the possible orderings of the k + 1 cards below C after insertion are equally likely. Therefore, when C is at the top, the possible orderings of the remaining n - 1 cards are uniformly distributed. After we make one more move, the order of all n cards is uniform over all possible arrangements. That is, X_{τ} has the stationary distribution π . In particular, the above process shows that the distribution of X_{τ} is independent of τ . Hence we conclude that τ is a strong stationary time.

Finally, we compute the expectation of τ . For $1 \leq i \leq n-2$, when \mathbb{C} is *i* cards from the bottom, then the probability that the top card is inserted below \mathbb{C} is $\frac{i+1}{n}$. Hence if τ_i denotes the time it takes for \mathbb{C} to move from *i* cards from the bottom to i+1 cards from the bottom, then $\mathbb{E}[\tau_i] = \frac{n}{i+1}$. It is easily seen that $\tau = \tau_1 + \cdots + \tau_{n-2} + 1$, so

$$\mathbb{E}[\tau] = \mathbb{E}[1 + \sum_{i=1}^{n-2} \tau_i] = 1 + \sum_{i=1}^{n-2} \frac{n}{i+1} = n \sum_{i=1}^{n-1} \frac{1}{i+1}.$$

Exercise 6.6. (Wald's Identity). Let (Y_t) be a sequence of independent and identically distributed random variables such that $\mathbb{E}[|Y_t|] < \infty$.

(a). Show that if τ is a random time so that the event $\{\tau \geq t\}$ is independent of Y_t and $\mathbb{E}[\tau] < \infty$, then

$$\mathbb{E}[\sum_{t=1}^{\tau} Y_t] = \mathbb{E}[\tau]\mathbb{E}[Y_1].$$
(7)

Hint: Write $\sum_{t=1}^{\tau} Y_t = \sum_{t=1}^{\infty} Y_t \mathbb{1}_{\{\tau \ge t\}}$. First consider the case where $Y_t \ge 0$.

Proof. Using the monotone convergence theorem and that $\{\tau \geq t\}$ is independent of Y_t , we see that

$$\mathbb{E}[\sum_{t=1}^{\tau} |Y_t|] = \sum_{t=1}^{\infty} \mathbb{E}[|Y_t| \mathbbm{1}_{\{\tau \ge t\}}] = \mathbb{E}[|Y_1|] \sum_{t=1}^{\infty} \mathbb{P}[\tau \ge t] = \mathbb{E}[|Y_1|] \mathbb{E}[\tau] < \infty.$$

Therefore, we can then apply the dominated convergence theorem to get that

$$\mathbb{E}[\sum_{t=1}^{\tau} Y_t] = \sum_{t=1}^{\infty} \mathbb{E}[Y_t \mathbb{1}_{\{\tau \ge t\}}] = \mathbb{E}[Y_1] \sum_{t=1}^{\infty} \mathbb{P}[\tau \ge t] = \mathbb{E}[Y_1] \mathbb{E}[\tau].$$

(b). Let τ be a stopping time for the sequence (Y_t) . Show that $\{\tau \geq t\}$ is independent of Y_t , so (7) holds provided that $\mathbb{E}[\tau] < \infty$.

Proof. Since τ is a stopping time, $\mathbb{1}_{\{\tau \geq t\}} = \mathbb{1}_{\{\tau \leq t-1\}^c}$ is a function of Y_0, \ldots, Y_{t-1} . Since Y_t is independent of Y_0, \ldots, Y_{t-1} , we conclude that $\{\tau \ge t\}$ is independent of Y_t .

Exercise 7.1. Let $\mathbf{X}_t = (X_t^1, \dots, X_t^n)$ be the position of the lazy random walker on the hypercube $\{0, 1\}^n$, started at $\mathbf{X}_0 = \mathbf{1} = (1, ..., 1)$. Show that the covariance between X_t^i and X_t^j is negative. Conclude that if $W(\mathbf{X}_t) = \sum_{i=1}^n X_t^i$, then $\operatorname{Var}(W(\mathbf{X}_t)) \leq n/4$. Hint: It may be easier to consider the variables $Y_t^i = 2X_t^i - 1$.

Proof. Let $Y_t^i = 2X_t^i - 1$. Then $\operatorname{Cov}(Y_t^i, Y_t^j) = 4\operatorname{Cov}(X_t^i, X_t^j)$, so it suffices to show that $\operatorname{Cov}(Y_t^i, Y_t^j) < 0$ for $i \neq j$ and t > 0. If the *i*th coordinate is chosen in the first t steps, then the conditional expectation of Y_t^i is 0. Hence

$$\mathbb{E}[Y_t^i] = (1 - \frac{1}{n})^t \quad \text{and} \quad \mathbb{E}[Y_t^i Y_t^j] = (1 - \frac{2}{n})^t$$

It follows that for t > 0,

$$\operatorname{Cov}(Y_t^i, Y_t^j) = \mathbb{E}[Y_t^i Y_t^j] - \mathbb{E}[Y_t^i] \mathbb{E}[Y_t^j] = (1 - \frac{2}{n})^t - (1 - \frac{1}{n})^{2t} < 0.$$

On the other hand,

$$4\operatorname{Var}(X_t^i) = \operatorname{Var}(Y_t^i) = \mathbb{E}[(Y_t^i)^2] - \mathbb{E}[Y_t^i]^2 = 1 - (1 - \frac{1}{n})^{2t} \le 1.$$

Therefore,

$$\operatorname{Var}(W(\mathbf{X}_t)) = \operatorname{Var}(\sum_{i=1}^n X_t^i) = \sum_{i=1}^n \operatorname{Var}(X_t^i) + \sum_{i \neq j} \operatorname{Cov}(X_t^i, X_t^j) \le \frac{n}{4}.$$

Exercise 7.2. Show that $Q(S, S^c) = Q(S^c, S)$ for any $S \subset \Omega$. (This is easy in the reversible case, but holds generally.)

Proof. We have

$$\begin{split} Q(S,S^c) &= \sum_{x \in S} \sum_{y \in S^c} \pi(x) P(x,y) \\ &= \sum_{y \in S^c} \left(\sum_{x \in \Omega} \pi(x) P(x,y) - \sum_{x \in S^c} \pi(x) P(x,y) \right) \\ &= \sum_{y \in S^c} \sum_{x \in \Omega} \pi(x) P(x,y) - \sum_{x \in S^c} \pi(x) \sum_{y \in S^c} P(x,y) \\ &= \sum_{y \in S^c} \pi(y) - \sum_{x \in S^c} \pi(x) \left(1 - \sum_{y \in S} P(x,y) \right) \\ &= \sum_{y \in S^c} \pi(y) - \sum_{x \in S^c} \pi(x) + \sum_{x \in S^c} \sum_{y \in S} \pi(x) P(x,y) \\ &= \sum_{x \in S^c} \sum_{y \in S} \pi(x) P(x,y) \\ &= Q(S^c, S). \end{split}$$

_	_	_
г		٦
L		
L		

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.