Testing Hypotheses

MIT 18.443

Dr. Kempthorne

Spring 2015

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Outline

Hypothesis Testing

Bernoulli Trials

- Bayesian Approach
- Neyman-Pearson Framework
- P-Values

э

< □ > <

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Hypothesis Testing: Bernoulli Trials

Statistical Decision Problem

• Two coins: Coin 0 and Coin 1 $P(Head \mid Coin 0) = 0.5$ $P(Head \mid Coin 1) = 0.7$

- Choose one coin, toss it 10 times and report number of Heads
- Decide which coin was chosen.

Hypothesis Testing Framework

- Data: X = number of heads in 10 tosses of coin
- Probability Model

$$X \sim Binomial(n = 10, prob = \theta)$$

 $P(X = x \mid \theta) = {n \choose x} \theta^{x} (1 - \theta)^{n-x}, x = 0, 1, ..., 10$

- Hypotheses:
 - $H_0: \theta = 0.5$ $H_1: \theta = 0.7$

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Outline

Hypothesis Testing

- Bernoulli Trials
- Bayesian Approach
- Neyman-Pearson Framework
- P-Values

э

< □ > <

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Hypothesis Testing: Bernoulli Trials

Bayesian Approach to Hypothesis Testing

- Specify prior distribution on Hypotheses (θ) $P(H_0) = P(\theta = 0.5) = \pi_0$ $P(H_1) = P(\theta = 0.7) = 1 - \pi_0.$
- Observe *X* = *x* (count of heads on 10 tosses), which specifies the *likelihood* function.

$$lik(\theta) = P(X = x \mid \theta) = \begin{pmatrix} n \\ x \end{pmatrix} \theta^{x} (1 - \theta)^{n-x}$$

• Compute posterior probabilities

$$P(H_0 \mid x) = \frac{P(H_0 \cap x)}{P(x)} = \frac{P(H_0)P(X = x \mid H_0)}{P(x)}$$

$$P(H_1 \mid x) = \frac{P(H_1 \cap x)}{P(x)} = \frac{P(H_1)P(X = x \mid H_1)}{P(x)}$$
Note: $P(x) = P(H_0 \cap x) + P(H_1 \cap x)$ (Law of Total Probability)
Decision rule: $\delta(x) = 0$ if $P(H_0 \mid x) > 1/2$.

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Decision Rule Based on Posterior Odds Ratio

• Posterior Odds Ratio:

$$\frac{P(H_0 \mid x)}{P(H_1 \mid x)} = \frac{P(H_0)P(X = x \mid H_0)/P(x)}{P(H_1)P(X = x \mid H_1)/P(x)}$$

$$= \left[\frac{P(H_0)}{P(H_1)}\right] \times \left[\frac{P(X = x \mid H_0)}{P(X = x \mid H_1)}\right]$$

$$= [\text{Prior Odds}] \times [\text{Likelihood Ratio}]$$
• Decision rule: $\delta(x) = 0$ if $\frac{P(H_0 \mid x)}{P(H_1 \mid x)} > 1$.
• Decision rule equivalent to $\delta(x) = 0$ if $[\text{Likelihood Ratio}] > c$
 $(= P(H_1)/P(H_0))$
• Likelihood Ratio measures evidence of x in favor of H_0

Stronger evidence \equiv Higher Likelihood Ratio (smaller x)

-

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Bayes Decision Rules

Bayes Decision Rule:

- Given prior: $P(H_0) = \pi_0$ and $P(H_1) = 1 \pi_0$,
- Accept H₀ if
 - [Likelihood Ratio] $> \frac{P(H_1)}{P(H_0)} = \frac{(1-\pi_0)}{\pi_0}$
- Reject H_0 if [Likelihood Ratio] $\leq \frac{P(H_1)}{P(H_0)} = \frac{(1 - \pi_0)}{\pi_0}$

Example Cases:

- $\pi_0 = 1/2$: Accept H_0 if [Likelihood Ratio] > 1
- $\pi_0 = 1/11$: Accept H_0 if [Likelihood Ratio] > 10. (Stronger evidence required to accept H_0
- $\pi_0 = 5/6$: Accept H_0 if [Likelihood Ratio] > 1/5. (H_0 accepted with weaker evidence)

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Outline

Hypothesis Testing

- Bernoulli Trials
- Bayesian Approach

• Neyman-Pearson Framework

P-Values

э

▲ 同 ▶ ▲ 目

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Neyman-Pearson Framework: Components

- Hypotheses
 - Null Hypothesis: H₀.
 - Alternative Hypothesis: H_1 .
- Decision rule $\delta = \delta(X)$: accepts/rejects H_0 based on data X

 $\delta(x) = 0$ (accept H_0) and $\delta(x) = 1$ (reject H_0)

- Evaluate performance of decision rules using probabilities of two types of errors:
 - Type I Error: Rejecting H_0 when H_0 is true. $P(Type \mid Error) = P(\delta = 1 \mid H_0)$
 - $P(Iype \mid Error) = P(o = 1 \mid H_0)$
 - Type II Error: Accepting H_0 when H_1 is true. $P(Type \ II \ Error) = P(\delta = 0 \mid H_1)$

• Optimal decision rule:

Minimizes: $P(Type \ II \ Error)$ Subject to: $P(Type \ I \ Error) \leq \alpha$

where $\alpha : 0 < \alpha < 1$ is the significance level.

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

• Consider "Risk Set"
$$\mathcal{R}$$

 $\mathcal{R} = \{(x, y) : x = P(\delta = 1 | H_0), y = P(\delta = 0 | H_1), \text{ for a decision rule } \delta\}$

Note that:

$$\mathcal{R} = \{(x, y) : x = P(Type \ I \ Error \ for \ \delta), \\ y = P(Type \ II \ Error \ for \ \delta), \\ for \ a \ decision \ rule \ \delta\}$$

- The Risk Set \mathcal{R} is convex on the space of all decision rules $\mathcal{D} = \{\delta\}$ (including *randomized* decision rules)
- Apply convex optimization theory to solve for optimal δ using $h(\delta) = P(\delta = 1 \mid H_0)$ and $g(\delta) = P(\delta = 0 \mid H_1)$

Constrained Optimization:

Minimize: $g(\delta)$, subject to: $h(\delta) \le \alpha$ **Unconstrained Optimization of Lagrangian:** Minimize: $q(\delta, \lambda) = g(\delta) + \lambda [h(\delta) - \alpha]$

Solving the Optimization:

 $\bullet~{\rm Fix}~\lambda$ and minimize

 $q^*(\delta) = g(\delta) + \lambda h(\delta)$ for $\delta \in \mathcal{D}$

- For the solution $\delta^*,$ set $\mathcal{K}^* = q^*(\delta^*)$
- $\bullet\,$ The risk point for δ^* lies on the line

$$\{(x,y): K^* = y + \lambda x\}$$

which is equivalent to

(

$$\{(x,y): y = K^* - \lambda x\}$$

• δ^* corresponds to the tangent point of \mathcal{R} with slope = $-\lambda$.

• Specify
$$\lambda$$
 to solve $h(\delta^*) = \alpha$.
If $h(\delta^*) > \alpha$, then increase λ
If $h(\delta^*) < \alpha$, then decrease λ

Nature of Solution: For given λ , the solution δ^* minimizes

$$\begin{aligned} q^*(\delta) &= g(\delta) + \lambda h(\delta) = P(\delta = 0 \mid H_1) + \lambda P(\delta = 1 \mid H_0) \\ &= \int_{\mathcal{X}} [(1 - \delta(x))f_1(x) + \lambda \delta(x)f_0(x)]dx \\ &= 1 + \int_{\mathcal{X}} [\delta(x) \times [\lambda f_0(x) - f_1(x)]dx \end{aligned}$$

Bernoulli Trials Neyman-Pearson Framework

Nature of Solution: For given λ , the solution δ^* minimizes $q^*(\delta) = g(\delta) + \lambda h(\delta) = P(\delta = 0 \mid H_1) + \lambda P(\delta = 1 \mid H_0)$ $= \int_{\mathcal{V}} [(1 - \delta(x))f_1(x) + \lambda \delta(x)f_0(x)]dx$ $= 1 + \int_{\mathcal{X}} \delta(x) \times [\lambda f_0(x) - f_1(x)] dx$

To minimize $q^*(\delta)$:

- Note that $\delta(x) : 0 < \delta(x) < 1$ for all tests δ
- Set $\delta^*(x) = 0$ when $[\lambda f_0(x) f_1(x)] > 0$
- Set $\delta^*(x) = 1$ when $[\lambda f_0(x) f_1(x)] < 0$

The test δ^* accepts H_0 , $\delta^*(x) = 0$, when $\frac{f_0(x)}{f_1(x)} > 1/\lambda$ and rejects H_0 , $\delta^*(x) = 1$, when $\frac{f_1(x)}{f_0(x)} > \lambda$ The significance level of δ^* is $\alpha = E[\delta^*(X) \mid H_0] = P[f_1(x)/f_0(x) > \lambda \mid H_0]$

Neyman-Pearson Lemma:

- H_0 and H_1 are simple hypotheses.
- Define the test δ^* of significance level α using the Likelihood Ratio:

 $\delta^*(X) = 1$ when *LikelihoodRatio* < *c*, and *c* is chosen such that:

$$P(\delta^*(X) = 1 \mid H_0) = \alpha.$$

Then δ^* is the most powerful test of size α . For any other test δ' : If $P(\delta' = 1 | H_0) \le \alpha$, then $P(\delta'(X) = 1 | H_1) \le P(\delta^*(X) = 1 | H_1)$ Connection To Bayes Tests:

- $\bullet\,$ Consider the Likelihood Ratio Test δ^* corresponding to c
- δ^* is the Bayes test corresponding to

$$\frac{P(H_1)}{P(H_0)} = c = 1/\lambda.$$

- 4 同 6 4 日 6 4 日 6

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Additional Terminology

- The **power** of a test rule δ is $\beta = P(reject H_1 | H_1) = 1 - P(Type II Error).$
- The acceptance region of a test rule δ is $\{x : \delta(x) = 0\}$
- The **rejection region** of a test rule δ is $\{x : \delta(x) = 1\}$

$$\{x:\delta(x)=1\}$$

(人間) ト く ヨ ト く ヨ ト

Additional Terminology

• A test statistic T(X) is often associated with a decision rule δ , e.g.,

 $T(X) > t^* \Longleftrightarrow \delta(X) = 1$

- The distribution of T(X) given H_0 is the **null distribution**.
- An hypothesis is a **simple hypothesis** if it completely specifies the distribution of *X*, and of *T*(*X*). E.g.,

$$X \sim f(x \mid \theta), \theta \in \Theta$$

$$H_0: \theta = \theta_0 \text{ (simple)}$$

$$H_1: \theta = \theta_1 \text{ (simple)}$$

An hypothesis is a composite hypothesis if it does not completely specify the probability distribution.
 E.g., H₀: X ~ Poisson(θ) for some θ > 0.

• □ > • □ > • □ > • □ > •

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values

Additional Terminology

- Uniformly Most Powerful Tests.
 - Suppose
 - $H_0: \theta = \theta_0$ is simple
 - $H_1: \theta > \theta_0$ is composite

(The value θ_0 is fixed and known.)

- If the most powerful level-α test of H₀ versus a simple alternative θ = θ₁ > θ₀ is the same for all alternatives θ₁ > θ₀, then it is the Uniformly Most Powerful Test of H₀ versus H₁.
- One-sided Alternative: $H_1: \theta > \theta_0$, or, $H_1: \theta < \theta_0$
- Two-sided Alternative: $H_1: \theta \neq \theta_0$

	Hypothesis Testing	Bernoulli Trials Bayesian Approach Neyman-Pearson Framework P-Values	
Outline			

- Bernoulli Trials
- Bayesian Approach
- Neyman-Pearson Framework

P-Values

Bernoulli Trials Bayesian Approach Neyman-Pearson Framework **P-Values**

P-Values

Neyman-Pearson Hypothesis-Testing Framework

- $X \sim f(x \mid \theta)$, $\theta \in \Theta$ (pdf or pmf)
- Test Hypotheses:

 $H_0: \theta = \theta_0$ versus an alternative H_1

(θ_0 is a fixed value, so H_0 is simple)

• Test Statistic:

T(X), defined so that large values are evidence against H_0

• The rejection region is

{ $x : T(X) > t_0$ } where t_0 is chosen to that $P(T \ge t_0 | H_0) = \alpha$, (the significance level of test)

Definition: Given X = x is observed, the **P-value** of the test statistic T(x) is P-Value = $P(T(X) > t(x) | H_0)$.

What *P*-Values Are:

- The *P*-Value is the smallest significance level at which H_0 would be rejected.
- The *P*-Value is the chance of observing evidence as extreme or more extreme than *T*(*x*) under the probability model of *H*₀.
- The *P*-Value measures how unlikely (surprising) the data are if *H*₀ is true.

What *P*-Values Are Not:

• The *P*-value is **not** the probability H_0 is true.

18.443 Statistics for Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.