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Asymptotic Results: Overview 

Asymptotic Framework 

Data Model : Xn = (X1, X2, . . . , Xn) i.i.d. sample with.n pdf/pmf f (x1, . . . , xn | θ) = f (xi | θ)i=1
 

Data Realization: Xn = xn = (x1, . . . , xn)
 

Likelihood of θ (given ):xn

MLEθ of θ given = ( ): x x x1, . . . ,n n n

ˆ{ → ∞}θ : sequence of MLEs indexed by sample sizen n,n

L

lik(θ) = f (x1, . . . , xn | θ)
 
ˆ


Results: 

−−→

−−→ θ 

Asymptotic Variance: σˆ = Var(ˆθn 
θn)

L
Consistency: θ̂n  
  


κ(θ)/n
 

L
where κ(θ) is an explicit function of the pdf/pmf f (· | θ). 

Limiting Distribution: 
√ 
n(θ̂n − θ) −−→ N(0, κ(θ)). 
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Theorems for Asymptotic Results 

Setting: 

x1, . . . , xn a realization of an i.i.d. sample from distribution 
with density/pmf f (x | θ).  n£(θ) = ln f (xi | θ)i=1 

θ0: true value of θ 

θ̂n: the MLE 

Theorem 8.5.2.A Under appropriate smoothness conditions on f , 
the MLE θ̂n is consistent, i.e., for any true value θ0, for every E > 0, 

P(|θ̂n − θ0| > E) −→ 0. 
Proof: 

Weak Law of Large Numbers (WLLN)  L1 £(θ) −−→ E [log f (x | θ) | θ0] = log[f (x | θ)]f (x | θ0)dx n 
(Note!! statement holds for every θ given any value of θ0.) 
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Theorem 8.5.2A (continued) 

Proof (continued):
 

The MLE θ̂n maximizes 1 £(θ)n 
Since 1 £(θ) −→ E [log f (x | θ) | θ0],n 

θ̂n is close to θ∗ maximizing E [log f (x | θ) | θ0] 
Under smoothness conditions on f (x | θ), 

θ∗ maximizes E [log f (x | θ) | θ0] 
if θ∗ solves 

d (E [log f (x | θ) | θ0]) = 0 dθ 
Claim: θ∗ = θ0: 

d d(E [log f (x | θ) | θ0]) = log[f (x | θ)]f (x | θ0)dxdθ dθo {
d= log[f (x | θ)] f (x | θ0)dx(dθ x 
d [f (x |θ)] 

= dθ 
f (x |θ) f (x | θ0)dx 

d(at θ = θ0) = [ [f (x | θ)]dx ]|θ=θ0dθ 
d = [ d f (x | θ)dx ]|θ=θ0 = (1) ≡ 0.dθ dθ 
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Theorems for Asymptotic Results 

Theorem 8.5.B Under smoothness conditions on f (x | θ), 
L√ 

n(θ̂n −- θ00) −−→ N(0, 1/I((θ0)) 
∂2 

where I(θ) = E − log f (X | θ) | θ
∂θ2 

Proof: Using the Taylor approximation to £'(θ), centered at θ0 

consider the following development: 

θ − θ)£''(θ0)0 = £'(θ̂) ≈ £'(θ0) + (ˆ


£'(θ0)
 
=⇒ (θ̂ − θ) ≈ 

−£''(θ0)
 
√

√ 
n[ 1 £'(θ0)]
n=⇒ n(θ̂ − θ) ≈ 

1 [−£''(θ0)]n 
L

By the CLT 
√ 
n[ 1 £'(θ0)] −−→ N(0, I(θ0)) (Lemma A)n 

L
By the WLLN 1 [−£''(θ0)] −−→ I(θ0)n 

L
Thus: 

√ 
n(θ̂ − θ) −−→ (1/I(θ0))2N(0, I(θ0)) = N(0, 1/I(θ0)) 
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Theorems for Asymptotic Results 

Lemma A (extended). For the distribution with pdf/pmf f (x | θ) 
define 

The Score Function 
∂U(X ; θ) = logf (X | θ)∂θ 

The (Fisher) Information of the distribution - 0 (
∂2 

I(θ) = E − log f (X | θ) | θ
∂θ2 

Then under sufficient smoothness conditions on f (x | θ) 
(a). E [U(X ; θ) | θ] = 0 
(b). Var [U(X ; θ) | θ] = I(θ)o {

= E [U(X ; θ)]2 | θ]
Proof: 

Differentiate f (x | θ)dx = 1 with respect to θ two times. 
Interchange the order of differentiation and integration. 
(a) follows from the first derivative. 
(b) follows from the second derivative. 

MIT 18.443 7Maximum LikelihoodLarge Sample Theory 

∫

)



Large Sample Theory of Maximum Likelihood Estimates Asymptotic Distribution of MLEs 
Confidence Intervals Based on MLEs 

Theorems for Asymptotic Results 

Qualifications/Extensions 

Results require true θ0 to lie in interior of the parameter space.
 

Results require that {x : f (x | θ) > 0} not vary with θ.
 

Results extend to multi-dimensional θ
 
Vector-valued Score Function 
Matrix-valued (Fisher) Information 
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Confidence Intervals 

Confidence Interval for a Normal Mean 

X1, X2, . . . , Xn i.i.d. N(µ, σ0
2), unknown mean µ
 

(known σ0
2)
 

Parameter Estimate: X (sample mean) 
n11 

X = Xi 
n 

i=1 
E [X ] = µ 

Var [X ] = σ2 = σ0
2/n 

X 

A 95% confidence interval for µ is a random interval, 
calculated from the data, that contains µ with probability 
0.95, no matter what the value of the true µ. 
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Confidence Interval for a Normal Mean 

Sampling distribution of X
 
X ∼ N(µ, σ2 ) = N(µ, σ0

2/n)

X 

X − µ 
=⇒ Z = ∼ N(0, 1) (standard normal) 

σX 
For any 0 < α < 1, (e.g. α = 0.05) 

Define z(α/2) : P(Z > z(α/2)) = α/2 
By symmetry of the standard normal distribution 

P (−z(α/2) < Z < +z(α/2)) = 1 − α 
i.e., ( x 

X − µ
P −z(α/2) < < +z(α/2) = 1 − α 

σX 

Re-express interval of Z as interval of µ: o {
P X − z(α/2)σ < µ < X + z(α/2)σ = 1 − αX X 

The interval given by [X ± z(α/2) σ ] is the X 
100(1 − α)% confidence interval for µ 
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Confidence Interval for a Normal Mean 

Important Properties/Qualifications 

The confidence interval is random. 

The parameter µ is not random. 

100(1 − α)%: the confidence-level of the confidence interval is 
the probability that the random interval contains the fixed 
parameter µ (the “coverage probability” of the confidence 
interval) 

Given a data realization of (X1, . . . , Xn) = (x1, . . . , xn) 
µ is either inside the confidence interval or not. 

The confidence level scales the reliability of a sequence of 
confidence intervals constructed in this way. 

The confidence interval quantifies the uncertainty of the 
parameter estimate. 
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Confidence Intervals for Normal Distribution Parameters 

Normal Distribution with unknown mean (µ) and variance σ2 . 

X1, . . . , Xn i.i.d. N(µ, σ2), with MLEs:
 
µ̂ = X
 

n1 
σ̂2 =

1 
(Xi − X )2 

n 
i=1 

Confidence interval for µ based on the T -Statistic
 
X − µ


T = √ ∼ tn−1
S/ n 

where tn−1 is Student’s t distribution with (n − 1) degrees of 
1 nfreedom and S2 = (Xi − X )2 . n−1 i=1

Define tn−1(α/2) : P(tn−1 > tn−1(α/2)) = α/2 
By symmetry of Student’s t distribution 

P [−tn−1(α/2) < T < +tn−1(α/2)] = 1 − α[  
X − µ

i.e., P −tn−1(α/2) < √ < +tn−1(α/2) = 1 − α 
S n 
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Confidence Interval For Normal Mean 

Re-express interval of T as interval of µ:[
X − µ

P −tn−1 < √ < +tn−1 = 1 − α 
S n 

=⇒  √ √  
P X − tn−1(α/2)S/ n < µ < X + tn−1(α/2)S/ n = 1 − α 

√ 
The interval given by [X ± tn−1(α/2) S/ n] is the
 

100(1 − α)% confidence interval for µ
 
Properties of confidence intervals for µ 

Center is X = µ̂MLE √ 
Width proportional to σ̂µ̂MLE = S/ n (random!) 
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Confidence Interval For Normal Variance
 

Normal Distribution with unknown mean (µ) and variance σ2 . 

X1, . . . , Xn i.i.d. N(µ, σ2), with MLEs:
 
µ̂ = X
 

n1 
σ̂2 =

1 
(Xi − X )2 

n 
i=1 

Confidence interval for σ2 based on the sampling distribution 
of the MLE σ̂2 .
 

nσ̂2
 

Ω = 
σ2 ∼ χ2 

n−1. 

where χ2 
n−1 is Chi-squared distribution with (n − 1) d.f. 

Define χ2 
n−1(α

∗) : P(χ2 
n−1 > χn

2 
−1(α

∗)) = α∗ 

Using α∗ = α/2 and α∗ = (1 − α/2),o {
P +χn

2 
−1(1 − α/2) < Ω < +χ2 

n−1(α/2) = 1 − α( x 
nσ̂2 

i.e., P +χn
2 
−1(1 − α/2) <

σ2 < +χ2 
n−1(α/2) = 1 − α 
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Confidence Interval for Normal Variance 

Re-express interval of Ω as interval of σ2:
 
P[+χ2 +χ2
 

nn−1(1 − α/2) Ω −1(α/2)] = 1 − α< < 
nσ̂2 

P[+χ2 +χ2 

nσ̂2 nσ̂2 

P[ < σ2 < ] = 1 − α 
χ2 (α/2) χ2 (1 − α/2) 

nn (1 − α/2) (α/2)] = 1 − α< <−1 −1σ2 

−1 −1n n

The 100(1 − α)% confidence interval for σ2 is given by 
nσ̂2 nσ̂2 

[ < σ2 < ]
χ2 (α/2) χ2 (1 − α/2)−1 −1n n

Properties of confidence interval for σ2 

Asymmetrical about the MLE σ̂2 . 
Width proportional to σ̂2 (random!) 
100(1 − α)% confidence interval for σ immediate:a a 

n n 
[σ̂( ) < σ < σ̂( )]

χ2 (1 − α/2)2χ n (α/2)−1 −1n
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Confidence Intervals For Normal Distribution Parameters
 

Important Features of Normal Distribution Case 

Required use of exact sampling distributions of the MLEs 
µ̂ and σ̂2 . 

Construction of each confidence interval based on pivotal 
quantity: a function of the data and the parameters whose 
distribution does not involve any unknown parameters. 

Examples of pivotals 

X − µ
T = √ ∼ tn−1

S/ n 

nσ̂2 

Ω = ∼ χ2 

σ2 n−1 
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Confidence Intervals Based On Large Sample Theory 

Asymptotic Framework (Re-cap) 
Data Model : Xn = (X1, X2, . . . , Xn) i.i.d. sample with .n pdf/pmf f (x1, . . . , xn | θ) = f (xi | θ)i=1 

Likelihood of θ given Xn = xn = (x1, . . . , xn):
 
lik(θ) = f (x1, . . . , xn | θ)
 

ˆ ˆθn = θn(xn): MLE of θ given xn = (x1, . . . , xn) 
{θ̂n, n → ∞}: sequence of MLEs indexed by sample size n 

Results (subject to sufficient smoothness conditions on f ) 

−−→ θ
L

Consistency: θ̂n  
1L−−→

nI(θ) -Asymptotic Variance: σˆ = Var(θ̂nθn 
)
o {2d [log f (x | θ)]dθ 

nI(θ)(θ̂n 

where I(θ) = E [
 ] = E [−
 d2 

dθ2 [log f (x | θ)] ]
 
L−−→ N(0, 1). 
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Confidence Intervals Based on Large Sample Theory 

Large-Sample Confidence Interval 

Exploit the limiting pivotal quantity 
LZn = nI(θ)(θ̂n − θ) −−→ N(0, 1). 

I.e. 
P(−z(α/2) < Zn < +z(α/2)) ≈ 1 − α 

⇐⇒ P(−z(α/2) < nI(θ)(θ̂n − θ) < +z(α/2)) ≈ 1 − α 

⇐⇒ P(−z(α/2) < nI(θ̂n)(θ̂n − θ) < +z(α/2)) ≈ 1 − α 

Note (!): I(θ̂n) substituted for I(θ) 

Re-express interval of Zn as interval of θ:
 
P(θ̂n − z(α/2)√ 1 < θ < θ̂n + z(α/2)√ 1 ) ≈ 1 − α
 

nI(θ̂) nI(θ̂) 

The interval given by [θ̂n ± z(α/2)√ 1 ] is the 
nI(θ̂) 

100(1 − α)% confidence interval (large sample) for θ 
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Large-Sample Confidence Intervals 

Example 8.5.B. Poisson Distribution 

X1, . . . , Xn i.i.d. Poisson(λ) 
−λf (x | λ) = λ

x 
ex! 

n£(λ) = [xi ln(λ) − λ − ln(x!)]i=1

MLE λ̂
n1d£(λ) xi

λ̂ solves: = [ − 1] = 0; λ̂ = X . 
dλ λ 

i=1 

d2 Xi 1 
I(λ) = E [− log f (x | λ)] = E [ ] = 

dλ2 λ2 λ 
λ̂ − λ LZn = nI(λ̂)(λ̂− λ) = −−→ N(0, 1) 
λ̂/n 

Large-Sample Confidence Interval for λ 

Approximate 100(1 − α)% confidence interval for λ 
X[λ̂± σ̂λ̂] = [X ± z(α/2) n ] 
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Confidence Interval for Poisson Parameter
 

Deaths By Horse Kick in Prussian Army (Bortkiewicz, 1898) 

Annual Counts of fatalities in 10 corps of Prussian cavalry 
over a period of 20 years. 
n = 200 corps-years worth of data. 

Annual Fatalities Observed 
0 109 
1 65 
2 22 
3 3 
4 1 

Model X1, . . . , X200 as i.i.d. Poisson(λ). 
ˆ 122λMLE = X = 200 = 0.61
 

ˆ
σ̂ˆ = λMLE /n = .0552λMLE 

For an 95% confidence interval, z(α/2) = 1.96 giving 
0.61 ± (1.96)(.0552) = [.5018, .7182] 
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Confidence Interval for Multinomial Parameter
 

Definition: Multinomial Distribution 

W1, . . . , Wn are iid Multinomial(1, probs = (p1, . . . , pm)) r.v.s 

The sample space of each Wi is W = {1, 2, . . . , m}, a set of 
m distinct outcomes. 

P(Wi = k) = pk , k = 1, 2, . . . , m.
 

Define Count Statistics from Multinomial Sample:
 
nXk = i=1 1(Wi = k), (sum of indicators of outcome k), 

k = 1, . . . , m 

X = (X1, . . . , Xm) follows a multinomial distribution 
n! . m xjf (x1, . . . , xn | p1, . . . , pm) =  m j=1 pj

j=1 xi ! 

where (p1, . . . , pm) is the vector of cell probabilities with 
m m 
i=1 pi = 1 and n = is the total count. j=1 xi 

Note: for m = 2, the Wi are Bernoulli(p1) 
X1 is Binomial(n, p1) and X2 ≡ n − X1 
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MLEs of Multinomial Parameter 

Maximum Likelihood Estimation for Multinomial 

Likelihood function of counts
 
lik(p1, . . . , pm) = log [f (x1, . . . , xm | p1, . . . , pm)]
 

m m = log(n!) − log(xj !) + j=1 xj log(pj )j=1 

Note: Likelihood function of Multinomial Sample w1, . . . , , wn 
lik∗(p1, . . . , pm) = log [f (w1, . . . , wn | p1, . . . , pm)] 

n m = [ log(pj ) × 1(Wi = j)]i=1 j=1 
m = j=1 xj log(pj ) 

Maximum Likelihood Estimate (MLE) of (p1, . . . , pm) 
maximizes lik(p1, . . . , pm) (with x1, . . . , xm fixed!) 

Maximum achieved when differential is zero 
mConstraint: j=1 pj = 1 

Apply method of Lagrange multipliers 
Solution: p̂j = xj /n, j = 1, . . . , m. 

Note: if any xj = 0, then p̂j = 0 solved as limit 
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MLEs of Multinomial Parameter 

Example 8.5.1.A Hardy-Weinberg Equilibrium 

Equilibrium frequency of genotypes: AA, Aa, and aa 

P(a) = θ and P(A) = 1 − θ 

Equilibrium probabilities of genotypes: (1 − θ)2, 2(θ)(1 − θ), 
and θ2 . 

Multinomial Data: (X1, X2, X3) corresponding to counts of 
AA, Aa, and aa in a sample of size n. 

Sample Data 
Genotype AA Aa aa Total 
Count X1 X2 X3 n 
Frequency 342 500 187 1029 
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Hardy-Weinberg Equilibrium
 

Maximum-Likelihood Estimation of θ 

(X1, X2, X3) ∼ Multinomial(n, p = ((1 − θ)2 , 2θ(1 − θ), θ2)) 

Log Likelihood for θ
 
£(θ) = log(f (x1, x2, x3 | p1(θ), p2(θ), p3(θ)))
 

n! = log( p1(θ)
x1 p2(θ)

x2 p3(θ)
x3 )x1!x2!x3! 

= x1log((1 − θ)2) + x2log(2θ(1 − θ)) 
+x3log(θ

2) + (non-θ terms) 
= (2x1 + x2)log(1 − θ) + (2x3 + x2)log(θ) + (non-θ terms) 

First Differential of log likelihood:
 
(2x1 + x2) (2x3 + x2)


£ ' (θ) = − + 
1 − θ θ 

2x3 + x2 2x3 + x2ˆ=⇒ θ = = = 0.4247 
2x1 + 2x2 + 2x3 2n 
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Asymptotic variance of MLE θ̂:
 

Var(θ̂) −→ 
1 

E [−£ '' (θ)] 
Second Differential of log likelihood:
 

d (2x1 + x2) (2x3 + x2)

£ '' (θ) = [− + ]

dθ 1 − θ θ 

(2x1 + x2) (2x3 + x2) 
= − − 

(1 − θ)2 θ2 

Each of the Xi are Binomial(n, pi (θ)) so
 
E [X1] = np1(θ) = n(1 − θ)2
 

E [X2] = np2(θ) = n2θ(1 − θ)
 
E [X3] = np3(θ) = nθ2
 

E [−£ '' (θ)] = 
2n 

θ(1 − θ) a 
θ̂(1 − θ̂) .4247(1 − .4247)

ˆ = = = 0.0109σθ̂ 2n 2 × 1029 
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Hardy-Weinberg Model
 

Approximate 95% Confidence Interval for θ 

ˆInterval : θ ± z(α/2) × σ̂ˆ, with θ

θ̂ = 0.4247 

σ̂θ̂ = 0.0109 

z(α/2) = 1.96 (with α = 1 − 0.95)
 

Interval : 0.4247 ± 1.96 × (0.0109) = [0.4033, .4461]
 

Note (!!) : Bootstrap simulation in R of θ̂ the RMSE (θ̂) = 0.0109 
is virtually equal to σ̂θ̂
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