Maximum Likelihood Large Sample Theory

MIT 18.443

Dr. Kempthorne

Spring 2015

Outline

Large Sample Theory of Maximum Likelihood Estimates Asymptotic Distribution of MLEs

Confidence Intervals Based on MLEs

- **→** → **→**

Asymptotic Results: Overview

Asymptotic Framework

- Data Model : $\mathbf{X}_n = (X_1, X_2, \dots, X_n)$ i.i.d. sample with pdf/pmf $f(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$
- Data Realization: $\mathbf{X}_n = \mathbf{x}_n = (x_1, \dots, x_n)$
- Likelihood of θ (given \mathbf{x}_n): $lik(\theta) = f(x_1, \dots, x_n \mid \theta)$
- $\hat{\theta}_n$: **MLE** of θ given $\mathbf{x}_n = (x_1, \dots, x_n)$
- $\{\hat{\theta}_n, n \to \infty\}$: sequence of MLEs indexed by sample size *n* **Results:**
 - Consistency: $\hat{\theta}_n \xrightarrow{\mathcal{L}} \theta$
 - Asymptotic Variance: $\sigma_{\hat{\theta}_n} = \sqrt{Var(\hat{\theta}_n) \xrightarrow{\mathcal{L}} \sqrt{\kappa(\theta)/n}}$ where $\kappa(\theta)$ is an explicit function of the pdf/pmf $f(\cdot \mid \theta)$.
 - Limiting Distribution: $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{\mathcal{L}} N(0, \kappa(\theta)).$

Setting:

- x₁,..., x_n a realization of an i.i.d. sample from distribution with density/pmf f(x | θ).
- $\ell(\theta) = \sum_{i=1}^{n} \ln f(x_i \mid \theta)$
- θ_0 : true value of θ
- $\hat{\theta}_n$: the MLE

Theorem 8.5.2.A Under appropriate smoothness conditions on f, the MLE $\hat{\theta}_n$ is consistent, i.e., for any true value θ_0 , for every $\epsilon > 0$, $P(|\hat{\theta}_n - \theta_0| > \epsilon) \longrightarrow 0$.

Proof:

Weak Law of Large Numbers (WLLN)
 ¹/_nℓ(θ) → E[log f(x | θ) | θ₀] = ∫ log[f(x | θ)]f(x | θ₀)dx
 (Note!! statement holds for every θ given any value of θ₀.)

Theorem 8.5.2A (continued)

Proof (continued):

• The MLE $\hat{\theta}_n$ maximizes $\frac{1}{n}\ell(\theta)$ • Since $\frac{1}{n}\ell(\theta) \longrightarrow E[\log f(x \mid \theta) \mid \theta_0],$ $\hat{\theta}_n$ is close to θ^* maximizing $E[\log f(x \mid \theta) \mid \theta_0]$ • Under smoothness conditions on $f(x \mid \theta)$, θ^* maximizes $E[\log f(x \mid \theta) \mid \theta_0]$ if θ^* solves $\frac{d}{d\theta} \left(E[\log f(x \mid \theta) \mid \theta_0] \right) = 0$ • Claim: $\theta^* = \theta_0$: $\frac{d}{d\theta} \left(E[\log f(x \mid \theta) \mid \theta_0] \right) = \frac{d}{d\theta} \int \log[f(x \mid \theta)] f(x \mid \theta_0) dx$ $= \int \left(\frac{d}{d\theta} \log[f(x \mid \theta)]\right) f(x \mid \theta_0) dx$ $= \int \left(\frac{\frac{d}{d\theta} [f(x|\theta)]}{f(x|\theta)} \right) f(x \mid \theta_0) dx$ $(at \theta = \theta_0) = \left[\int \frac{d}{d\theta} [f(x \mid \theta)] dx\right]_{\theta = \theta_0}$ $= \left[\frac{d}{d\theta} \int f(x \mid \theta) dx\right]|_{\theta = \theta_0} = \frac{d}{d\theta}(1) \equiv 0.$

Theorem 8.5.B Under smoothness conditions on $f(x \mid \theta)$,

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{L} N(0, 1/I(\theta_0))}{\text{where } I(\theta) = E\left(-\left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta)\right] \mid \theta\right)$$

Proof: Using the Taylor approximation to $\ell'(\theta)$, centered at θ_0 consider the following development:

•
$$0 = \ell'(\hat{\theta}) \approx \ell'(\theta_0) + (\hat{\theta} - \theta)\ell''(\theta_0)$$

 $\implies (\hat{\theta} - \theta) \approx \frac{\ell'(\theta_0)}{-\ell''(\theta_0)}$
 $\implies \sqrt{n}(\hat{\theta} - \theta) \approx \frac{\sqrt{n}[\frac{1}{n}\ell'(\theta_0)]}{\frac{1}{n}[-\ell''(\theta_0)]}$

• By the CLT $\sqrt{n}[\frac{1}{n}\ell'(\theta_0)] \xrightarrow{\mathcal{L}} N(0, I(\theta_0))$ (Lemma A)

• By the WLLN $\frac{1}{n}[-\ell''(\theta_0)] \xrightarrow{\mathcal{L}} I(\theta_0)$

Thus: $\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{\mathcal{L}} (1/I(\theta_0))^2 N(0, I(\theta_0)) = N(0, 1/I(\theta_0))$

Lemma A (extended). For the distribution with pdf/pmf $f(x \mid \theta)$ define

• The Score Function $U(X;\theta) = \frac{\partial}{\partial \theta} log f(X \mid \theta)$ • The (Fisher) Information of the distribution $I(\theta) = E\left(-\left[\frac{\partial^2}{\partial \theta^2}\log f(X \mid \theta)\right] \mid \theta\right)$ Then under sufficient smoothness conditions on $f(x \mid \theta)$ (a). $E[U(X;\theta) \mid \theta] = 0$ (b). $Var[U(X;\theta) \mid \theta] = I(\theta)$ $= E\left([U(X;\theta)]^2 \mid \theta]\right)$

Proof:

- Differentiate $\int f(x \mid \theta) dx = 1$ with respect to θ two times.
- Interchange the order of differentiation and integration.
- (a) follows from the first derivative.
- (b) follows from the second derivative.

Qualifications/Extensions

- Results require true θ_0 to lie in interior of the parameter space.
- Results require that $\{x : f(x \mid \theta) > 0\}$ not vary with θ .
- Results extend to multi-dimensional θ
 Vector-valued Score Function
 Matrix-valued (Fisher) Information

Outline

Large Sample Theory of Maximum Likelihood Estimates Asymptotic Distribution of MLEs

• Confidence Intervals Based on MLEs

- **→** → **→**

Confidence Intervals

Confidence Interval for a Normal Mean

- X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma_0^2)$, unknown mean μ (known σ_0^2)
- Parameter Estimate: \overline{X} (sample mean)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$E[\overline{X}] = \mu$$
$$/ar[\overline{X}] = \sigma_{\overline{X}}^2 = \sigma_0^2/n$$

• A 95% confidence interval for μ is a random interval, calculated from the data, that contains μ with probability 0.95, no matter what the value of the true μ .

Confidence Interval for a Normal Mean

 $100(1-\alpha)\%$ confidence interval for μ

Confidence Interval for a Normal Mean

Important Properties/Qualifications

- The confidence interval is random.
- The parameter μ is not random.
- $100(1-\alpha)$ %: the confidence-level of the confidence interval is the probability that the random interval contains the fixed parameter μ (the "coverage probability" of the confidence interval)
- Given a data realization of $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ μ is either inside the confidence interval or not.
- The confidence level scales the reliability of a sequence of confidence intervals constructed in this way.
- The confidence interval quantifies the uncertainty of the parameter estimate.

イロト イポト イラト イラト

Confidence Intervals for Normal Distribution Parameters

Normal Distribution with unknown mean (μ) and variance σ^2 .

•
$$X_1, \ldots, X_n$$
 i.i.d. $N(\mu, \sigma^2)$, with MLEs:
 $\hat{\mu} = \overline{X}$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

• Confidence interval for μ based on the *T*-Statistic

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

where t_{n-1} is Student's *t* distribution with (n-1) degrees of freedom and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

• Define $t_{n-1}(\alpha/2)$: $P(t_{n-1} > t_{n-1}(\alpha/2)) = \alpha/2$

By symmetry of Student's t distribution

$$P\left[-t_{n-1}(\alpha/2) < T < +t_{n-1}(\alpha/2)\right] = 1 - \alpha$$

i.e.,
$$P\left[-t_{n-1}(\alpha/2) < \frac{\overline{X} - \mu}{S\sqrt{n}} < +t_{n-1}(\alpha/2)\right] = 1 - \alpha$$

Confidence Interval For Normal Mean

• Re-express interval of
$$T$$
 as interval of μ :

$$P\left[-t_{n-1} < \frac{\overline{X} - \mu}{S\sqrt{n}} < +t_{n-1}\right] = 1 - \alpha$$

$$\implies P\left[\overline{X} - t_{n-1}(\alpha/2)S/\sqrt{n} < \mu < \overline{X} + t_{n-1}(\alpha/2)S/\sqrt{n}\right] = 1 - \alpha$$
The interval of \overline{X} is the set of $(\alpha/2)S/\sqrt{n} = 1 - \alpha$

- The interval given by $[\overline{X} \pm t_{n-1}(\alpha/2) S/\sqrt{n}]$ is the $100(1-\alpha)\%$ confidence interval for μ
- Properties of confidence intervals for μ
 - Center is $\overline{X} = \hat{\mu}_{MLE}$
 - Width proportional to $\hat{\sigma}_{\hat{\mu}_{MLE}} = S/\sqrt{n}$ (random!)

Confidence Interval For Normal Variance

Normal Distribution with unknown mean (μ) and variance σ^2 .

•
$$X_1, \dots, X_n$$
 i.i.d. $N(\mu, \sigma^2)$, with MLEs:
 $\hat{\mu} = \overline{X}$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

• Confidence interval for σ^2 based on the sampling distribution of the MLE $\hat{\sigma}^2$

$$\Omega = \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-1}.$$

where χ^2_{n-1} is Chi-squared distribution with $(n-1)$ d.f.

• Define
$$\chi^{2}_{n-1}(\alpha^{*})$$
: $P(\chi^{2}_{n-1} > \chi^{2}_{n-1}(\alpha^{*})) = \alpha^{*}$
Using $\alpha^{*} = \alpha/2$ and $\alpha^{*} = (1 - \alpha/2)$,
 $P(+\chi^{2}_{n-1}(1 - \alpha/2) < \Omega < +\chi^{2}_{n-1}(\alpha/2)) = 1 - \alpha$
i.e., $P\left(+\chi^{2}_{n-1}(1 - \alpha/2) < \frac{n\hat{\sigma}^{2}}{\sigma^{2}} < +\chi^{2}_{n-1}(\alpha/2)\right) = 1 - \alpha$

ъ

Confidence Interval for Normal Variance

- Re-express interval of Ω as interval of σ^2 : $P[+\chi^2_{n-1}(1-\alpha/2) < \Omega < +\chi^2_{n-1}(\alpha/2)] = 1-\alpha$ $P[+\chi^2_{n-1}(1-\alpha/2) < \frac{n\hat{\sigma}^2}{\sigma^2} < +\chi^2_{n-1}(\alpha/2)] = 1-\alpha$ $P[\frac{n\hat{\sigma}^2}{\chi^2_{n-1}(\alpha/2)} < \sigma^2 < \frac{n\hat{\sigma}^2}{\chi^2_{n-1}(1-\alpha/2)}] = 1-\alpha$
- The $100(1 \alpha)$ % confidence interval for σ^2 is given by $[\frac{n\hat{\sigma}^2}{\chi^2_{n-1}(\alpha/2)} < \sigma^2 < \frac{n\hat{\sigma}^2}{\chi^2_{n-1}(1 \alpha/2)}]$
- Properties of confidence interval for σ^2
 - Asymmetrical about the MLE $\hat{\sigma}^2$.
 - Width proportional to $\hat{\sigma}^2$ (random!)
 - $100(1 \alpha)$ % confidence interval for σ immediate:

$$\left[\hat{\sigma}\left(\sqrt{\frac{n}{\chi_{n-1}^{2}(\alpha/2)}}\right) < \sigma < \hat{\sigma}\left(\sqrt{\frac{n}{\chi_{n-1}^{2}(1-\alpha/2)}}\right)\right]$$

Confidence Intervals For Normal Distribution Parameters

Important Features of Normal Distribution Case

- Required use of exact sampling distributions of the MLEs $\hat{\mu}$ and $\hat{\sigma}^2$.
- Construction of each confidence interval based on **pivotal quantity**: a function of the data and the parameters whose distribution does not involve any unknown parameters.
- Examples of **pivotals**

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$\Omega = \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-1}$$

Confidence Intervals Based On Large Sample Theory

Asymptotic Framework (Re-cap)

- Data Model : $\mathbf{X}_n = (X_1, X_2, \dots, X_n)$ i.i.d. sample with pdf/pmf $f(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$
- Likelihood of θ given $\mathbf{X}_n = \mathbf{x}_n = (x_1, \dots, x_n)$: $lik(\theta) = f(x_1, \dots, x_n \mid \theta)$
- $\hat{\theta}_n = \hat{\theta}_n(\mathbf{x}_n)$: **MLE** of θ given $\mathbf{x}_n = (x_1, \dots, x_n)$
- $\{\hat{\theta}_n, n \to \infty\}$: sequence of MLEs indexed by sample size *n*

Results (subject to sufficient smoothness conditions on f)

- Consistency: $\hat{\theta}_n \xrightarrow{\mathcal{L}} \theta$
- Asymptotic Variance: $\sigma_{\hat{\theta}_n} = \sqrt{Var(\hat{\theta}_n)} \xrightarrow{\mathcal{L}} \sqrt{\frac{1}{nI(\theta)}}$

where $I(\theta) = E[\left(\frac{d}{d\theta}[\log f(x \mid \theta)]\right)^2] = E[-\left(\frac{d^2}{d\theta^2}[\log f(x \mid \theta)]\right)]$

• Limiting Distribution: $\sqrt{nI(\theta)}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} N(0, 1).$

Confidence Intervals Based on Large Sample Theory

Large-Sample Confidence Interval

- Exploit the limiting **pivotal quantity** $\mathcal{Z}_n = \sqrt{nI(\theta)}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} N(0, 1).$
- I.e.

$$\begin{array}{rcl} P(-z(\alpha/2) &< & \mathcal{Z}_n &< +z(\alpha/2)) \approx & 1-\alpha \\ \Leftrightarrow & P(-z(\alpha/2) &< & \sqrt{n\mathrm{I}(\theta)}(\hat{\theta}_n - \theta) &< +z(\alpha/2)) \approx & 1-\alpha \\ \Leftrightarrow & P(-z(\alpha/2) &< & \sqrt{n\mathrm{I}(\hat{\theta}_n)}(\hat{\theta}_n - \theta) &< +z(\alpha/2)) \approx & 1-\alpha \\ \mathrm{Note} \ (!): \ \mathrm{I}(\hat{\theta}_n) \ \mathrm{substituted} \ \mathrm{for} \ \mathrm{I}(\theta) \end{array}$$

- Re-express interval of \mathcal{Z}_n as interval of θ : $P(\hat{\theta}_n - z(\alpha/2)\frac{1}{\sqrt{nI(\hat{\theta})}} < \theta < \hat{\theta}_n + z(\alpha/2)\frac{1}{\sqrt{nI(\hat{\theta})}}) \approx 1 - \alpha$
- The interval given by $[\hat{\theta}_n \pm z(\alpha/2)\frac{1}{\sqrt{nI(\hat{\theta})}}]$ is the $100(1-\alpha)\%$ confidence interval (large sample) for θ

N

Large-Sample Confidence Intervals

Example 8.5.B. Poisson Distribution

•
$$X_1, \ldots, X_n$$
 i.i.d. $Poisson(\lambda)$
• $f(x \mid \lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$
• $\ell(\lambda) = \sum_{i=1}^n [x_i \ln(\lambda) - \lambda - \ln(x!)]$
ALE $\hat{\lambda}$

•
$$\hat{\lambda}$$
 solves: $\frac{d\ell(\lambda)}{d\lambda} = \sum_{i=1}^{n} [\frac{x_i}{\lambda} - 1] = 0; \ \hat{\lambda} = \overline{X}.$
• $I(\lambda) = E[-\frac{d^2}{d\lambda^2} \log f(x \mid \lambda)] = E[\frac{X_i}{\lambda^2}] = \frac{1}{\lambda}$
• $\mathcal{Z}_n = \sqrt{nI(\hat{\lambda})}(\hat{\lambda} - \lambda) = \frac{\hat{\lambda} - \lambda}{\sqrt{\hat{\lambda}/n}} \xrightarrow{\mathcal{L}} N(0, 1)$

Large-Sample Confidence Interval for λ

• Approximate $100(1 - \alpha)\%$ confidence interval for λ $[\hat{\lambda} \pm \hat{\sigma}_{3}] = [\overline{X} \pm z(\alpha/2)\sqrt{\overline{X}}]$

$$[\chi_{\hat{\lambda}}] = [X \pm z(\alpha/2)]$$

Confidence Interval for Poisson Parameter

Deaths By Horse Kick in Prussian Army (Bortkiewicz, 1898)

- Annual Counts of fatalities in 10 corps of Prussian cavalry over a period of 20 years.
- n = 200 corps-years worth of data.

	Annual Fatalities	Observed
	0	109
	1	65
	2	22
	3	3
	4	1
٩	Model X_1, \ldots, X_{200} as i.i.d. <i>Poisson</i>	$\overline{p(\lambda)}$.
٩	$\hat{\lambda}_{MLE} = \overline{X} = \frac{122}{200} = 0.61$	
٩	$\hat{\sigma}_{\hat{\lambda}_{MLE}} = \sqrt{\hat{\lambda}_{MLE}/n} = .0552$	
٩	For an 95% confidence interval, $z(c)$	u/2) = 1.96 giving
	$0.61 \pm (1.96)(.0552) = [.50]$)18,.7182]

⊒ ▶

Confidence Interval for Multinomial Parameter

Definition: Multinomial Distribution

- W_1, \ldots, W_n are iid $Multinomial(1, probs = (p_1, \ldots, p_m))$ r.v.s
- The sample space of each W_i is $\mathcal{W} = \{1, 2, \dots, m\}$, a set of m distinct outcomes.

•
$$P(W_i = k) = p_k, \ k = 1, 2, ..., m.$$

Define Count Statistics from Multinomial Sample:

• $X_k = \sum_{i=1}^n \mathbb{1}(W_i = k)$, (sum of indicators of outcome k), $k = 1, \dots, m$

• $\mathbf{X} = (X_1, \dots, X_m)$ follows a multinomial distribution $f(x_1, \dots, x_n \mid p_1, \dots, p_m) = \frac{n!}{\prod_{j=1}^m x_i!} \prod_{j=1}^m p_j^{x_j}$ where (p_1, \dots, p_m) is the vector of cell probabilities with $\sum_{i=1}^m p_i = 1$ and $n = \sum_{j=1}^m x_i$ is the total count. Note: for m = 2, the W_i are Bernoulli (p_1) X_1 is Binomial (n, p_1) and $X_2 \equiv n - X_1$.

MLEs of Multinomial Parameter

Maximum Likelihood Estimation for Multinomial

- Likelihood function of counts $lik(p_1, \dots, p_m) = log[f(x_1, \dots, x_m | p_1, \dots, p_m)]$ $= log(n!) - \sum_{j=1}^m log(x_j!) + \sum_{j=1}^m x_j log(p_j)$
- Note: Likelihood function of Multinomial Sample w_1, \ldots, w_n $lik^*(p_1, \ldots, p_m) = log[f(w_1, \ldots, w_n \mid p_1, \ldots, p_m)]$ $= \sum_{i=1}^n [\sum_{j=1}^m \log(p_j) \times 1(W_i = j)]$ $= \sum_{j=1}^m x_j log(p_j)$
- Maximum Likelihood Estimate (MLE) of (p₁,..., p_m) maximizes lik(p₁,..., p_m) (with x₁,..., x_m fixed!)
 - Maximum achieved when differential is zero
 - Constraint: $\sum_{j=1}^{m} p_j = 1$
 - Apply method of Lagrange multipliers

Solution: $\hat{p}_j = x_j/n$, $j = 1, \ldots, m$.

Note: if any $x_j = 0$, then $\hat{p}_j = 0$ solved as limit

MLEs of Multinomial Parameter

Example 8.5.1.A Hardy-Weinberg Equilibrium

- Equilibrium frequency of genotypes: AA, Aa, and aa
- $P(a) = \theta$ and $P(A) = 1 \theta$
- Equilibrium probabilities of genotypes: $(1 \theta)^2$, $2(\theta)(1 \theta)$, and θ^2 .
- Multinomial Data: (X₁, X₂, X₃) corresponding to counts of AA, Aa, and aa in a sample of size n.

Sample Data

Genotype	AA	Aa	аа	Total
Count	X_1	X_2	<i>X</i> ₃	n
Frequency	342	500	187	1029

- 同 ト - ヨ ト - - ヨ ト

Hardy-Weinberg Equilibrium

Maximum-Likelihood Estimation of θ

•
$$(X_1, X_2, X_3) \sim Multinomial(n, p = ((1 - \theta)^2, 2\theta(1 - \theta), \theta^2))$$

• Log Likelihood for
$$\theta$$

 $\ell(\theta) = log(f(x_1, x_2, x_3 | p_1(\theta), p_2(\theta), p_3(\theta)))$
 $= log(\frac{n!}{x_1!x_2!x_3!}p_1(\theta)^{x_1}p_2(\theta)^{x_2}p_3(\theta)^{x_3})$
 $= x_1log((1 - \theta)^2) + x_2log(2\theta(1 - \theta))$
 $+x_3log(\theta^2) + (\text{non-}\theta \text{ terms})$
 $= (2x_1 + x_2)log(1 - \theta) + (2x_3 + x_2)log(\theta) + (\text{non-}\theta \text{ terms})$

• First Differential of log likelihood:

$$\ell'(\theta) = -\frac{(2x_1+x_2)}{1-\theta} + \frac{(2x_3+x_2)}{\theta}$$

$$\implies \hat{\theta} = \frac{2x_3 + x_2}{2x_1 + 2x_2 + 2x_3} = \frac{2x_3 + x_2}{2n} = 0.4247$$

• Asymptotic variance of MLE $\hat{\theta}$: $Var(\hat{\theta}) \longrightarrow \frac{1}{F[-\ell''(\theta)]}$ Second Differential of log likelihood: $\ell''(\theta) = \frac{d}{d\theta} \left[-\frac{(2x_1 + x_2)}{1 - \theta} + \frac{(2x_3 + x_2)}{\theta} \right]$ $= -\frac{(2x_1+x_2)}{(1-\theta)^2} - \frac{(2x_3+x_2)}{\theta^2}$ • Each of the X_i are $Binomial(n, p_i(\theta))$ so $E[X_1] = np_1(\theta) = n(1-\theta)^2$ $E[X_2] = np_2(\theta) = n2\theta(1-\theta)$ $E[X_3] = np_3(\theta) = n\theta^2$ • $E[-\ell''(\theta)] = \frac{2n}{\theta(1-\theta)}$ • $\hat{\sigma}_{\hat{\theta}} = \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{2n}} = \sqrt{\frac{.4247(1-.4247)}{2\times1029}} = 0.0109$

Hardy-Weinberg Model

Approximate 95% Confidence Interval for θ

Interval :
$$\hat{\theta} \pm z(\alpha/2) \times \hat{\sigma}_{\hat{\theta}}$$
, with
• $\hat{\theta} = 0.4247$
• $\hat{\sigma}_{\hat{\theta}} = 0.0109$
• $z(\alpha/2) = 1.96$ (with $\alpha = 1 - 0.95$)
Interval : $0.4247 \pm 1.96 \times (0.0109) = [0.4033, .4461]$
Note (!!) : Bootstrap simulation in R of $\hat{\theta}$ the $RMSE(\hat{\theta}) = 0.0109$
is virtually equal to $\hat{\sigma}_{\hat{\theta}}$

同 ト イ ヨ ト イ ヨ ト

18.443 Statistics for Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.