Testing Hypotheses II

MIT 18.443

Dr. Kempthorne

Spring 2015

æ

_ ₽ ▶

Hypothesis Testing II

• Duality of Confidence Intervals and Tests

• Generalized Likelihood Ratio Tests

Confidence Intervals and Hypothesis Tests

Example 9.3A

Ν

- X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$, unknown μ , known σ^2 .
- Test hypotheses: $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$.
- Use α -level test that rejects H_0 when $|\overline{X} \mu_0| > t_0$

Critical value: $t_0 = \sigma_{\overline{X}} z(\alpha/2)$ Acceptance Region: $A(\mu_0) = \{\overline{X} : |\overline{X} - \mu_0| < \sigma_{\overline{X}} z(\alpha/2)\}$ which is equivalent to \overline{X} values satisfying:

 $\begin{array}{rcl} & -\sigma_{\overline{X}} z(\alpha/2) & < & \overline{X} - \mu_0 & < & +\sigma_{\overline{X}} z(\alpha/2) \\ \text{or} & \overline{X} - \sigma_{\overline{X}} z(\alpha/2) & < & \mu_0 & < & \overline{X} + \sigma_{\overline{X}} z(\alpha/2) \end{array}$ Confidence Interval for μ :

$$C(\overline{X}) = \begin{bmatrix} \overline{X} - \sigma_{\overline{X}} z(\alpha/2) , \ \overline{X} + \sigma_{\overline{X}} z(\alpha/2) \end{bmatrix}$$

(Confidence Level = 100(1 - α)%)
OTE: $\overline{X} \in A(\mu_0)$ if and only if $\mu_0 \in C(\overline{X})$ (!!)

Duality of Tests and Confidence Intervals

Theorem 9.3A Suppose

• For every $\theta_0 \in \Theta$ there is a test at level α of the hypothesis $H_0: \theta = \theta_0$, and

• $A(\theta_0)$ is the acceptance region of the test.

Then the set

$$C(\mathbf{X}) = \{\theta : \mathbf{X} \in A(\theta)\}$$

is a $100(1 - \alpha)$ % confidence region for θ .
Proof: Because A is the acceptance region of a level- α test:
$$P[\mathbf{X} \in A(\theta_0) | \theta = \theta_0] = 1 - \alpha$$

For a given $\mathbf{X} = \mathbf{x}$,
$$\theta_0 \in C(\mathbf{x}) \implies \mathbf{x} \in A(\theta_0)$$
and $\mathbf{x} \in A(\theta_0) \implies \theta_0 \in C(\mathbf{x})$,
so $\{\mathbf{x} \in A(\theta_0)\} \equiv \{\mathbf{x} : C(\mathbf{x}) \ni \theta_0\}$.
$$\implies P[C(\mathbf{X}) \ni \theta_0 \mid \theta = \theta_0] = 1 - \alpha.$$

Duality of Tests and Confidence Intervals

Theorem 9.3B Suppose

Then, an acceptance region for a test at level α of the hypothesis $H_0: \theta = \theta_0$ can be constructed as:

$$A(\theta_0) = \{\mathbf{X} : C(\mathbf{X}) \ni \theta_0\}$$

Proof: Because $\{\mathbf{x} : C(\mathbf{x}) \ni \theta_0\} \equiv \{\mathbf{x} \in A(\theta_0)\}, \implies P[\{\mathbf{x} \in A(\theta_0)\}] = P[C(\mathbf{X}) \ni \theta_0 \mid \theta = \theta_0] = 1 - \alpha.$

Hypothesis Testing II Duality of Confidence Intervals and Tests

Generalized Likelihood Ratio Tests

Generalized Likelihood Ratio Tests

Likelihood Analysis Framework

- Data observations: $\mathbf{X} = (X_1, \dots, X_n)$
- Joint distribution of **X** given by joint pdf/pmf $f(\mathbf{x} \mid \theta), \ \theta \in \Theta$
- Null and Alternative Hypotheses
 H₀: θ ∈ Θ₀, and H₁: θ ∉ Θ₀,
 for some proper subset Θ₀ ⊂ Θ.
- The MLE of θ solves: $lik(\hat{\theta}) = \max_{\theta \in \Theta} lik(\theta)$ where $lik(\theta) = f(\mathbf{x} \mid \theta)$ (a function of θ given data \mathbf{x})
- The MLE of θ under H_0 solves $lik(\hat{\theta}_0) = \max_{\theta \in \Theta_0} lik(\theta)$.

Definition: The **generalized likelihood ratio** $\Lambda = \frac{lik(\hat{\theta}_0)}{lik(\hat{\theta})} \quad \text{(for testing } H_0 \text{ vs } H_1\text{)}$

Generalized Likelihood Ratio Test

• Generalized likelihood ratio for testing H_0 vs H_1 :

$$\Lambda = \frac{lik(\hat{\theta}_0)}{lik(\hat{\theta})}$$

- Properties of Λ
 - $\begin{array}{ll} \Lambda > 0, & \text{since } lik(\theta) > 0 \\ \Lambda \leq 1, & \text{because } lik(\hat{\theta}) \geq lik(\theta_0) \end{array}$
- Higher values of Λ are evidence in favor H_0
- Lower values of Λ are evidence against H_0
- Rejection Region of Generalized Likelihood Ratio Test: $\{ {\bf x} : \Lambda < \lambda_0 \} \text{ for some } \lambda_0$
- For level- α test of simple H_0 choose λ_0 : $P(\Lambda < \lambda_0 \mid H_0) = \alpha$
- If H_0 is composite, then choose largest λ_0 : $P(\Lambda < \lambda_0 \mid \theta) \le \alpha$, for all $\theta \in \Theta_0$

Generalized Likelihood Ratio Test

Define LRStat by Rescaling the Likelihood Ratio

$$LRStat = -2 \times \log(\Lambda) = -2 \times \log[\frac{lik(\theta_0)}{lik(\hat{\theta})}]$$

Since 0 < Λ < 1,
 LRStat > 0

Evidence against H_0 given by high values of *LRStat*.

• For simple
$$H_0: \theta = \theta_0$$
,
 $LRStat = 2[\ell(\hat{\theta}) - \ell(\theta_0)]$

• From asymptotic theory

$$\ell(\hat{\theta}_0) \approx \ell(\hat{\theta}) + (\theta_0 - \hat{\theta})\ell'(\hat{\theta}) + \frac{1}{2}(\theta_0 - \hat{\theta})^2\ell''(\hat{\theta})$$

SO

I

$$\begin{array}{lll} \textit{RStat} &\approx & [\hat{\theta} - \theta_0]^2 \times [-\ell''(\hat{\theta})] \\ &= & [\sqrt{n}(\hat{\theta} - \theta_0)^2] \times [-\ell''(\hat{\theta})/n] \\ & \xrightarrow{\mathcal{D}} & [\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0)^2] \sim [N(0,1)]^2 \sim \chi_1^2 \end{array}$$

Constructing Generalized Likelihood Ratio Tests

Test Statistic for Generalized Likelihood Ratio Test $LRStat = -2\log(\Lambda) = -2 \times \log[\frac{lik(\hat{\theta}_0)}{lik(\hat{\theta})}]$ $= 2 \times [\ell(\hat{\theta}) - \ell(\hat{\theta}_0)]$

Example 1: Test for Mean of Normal Distribution

•
$$X_1, \ldots, X_n$$
 i.i.d. $N(\theta, \sigma^2)$, (known variance)
• $\log[f(x_i \mid \theta)] = -\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x_i - \theta)^2$
• $\ell(\theta) = \sum_{i=1}^n \log[f(x_i \mid \theta)] = -\frac{n}{2}\ln 2\pi\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \theta)^2$
For testing $H_0: \theta = \theta_0$
 $LRStat = 2[\ell(\hat{\theta}) - \ell(\theta_0)] = \frac{1}{\sigma^2}[-\sum_{i=1}^n (x_i - \hat{\theta})^2 + \sum_{i=1}^n (x_i - \theta_0)^2]$
• Note that
 $\sum_{i=1}^n (x_i - \theta_0)^2 = \sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \theta_0)^2$
 $= \sum_{i=1}^n (x_i - \hat{\theta})^2 + n(\overline{x} - \theta_0)^2$
• So $LRStat = \frac{n(\overline{x} - \theta_0)^2}{\sigma^2} \sim N(0, 1)$ under H_0

T

Constructing Generalized Likelihood Ratio Tests

Test Statistic for Generalized Likelihood Ratio Test

$$LRStat = -2\log(\Lambda) = -2 \times \log[\frac{lik(\hat{\omega}_0)}{lik(\hat{\omega})}]$$

$$= 2 \times [\ell(\hat{\omega}) - \ell(\hat{\omega}_0)]$$

Example 2: Test for Mean of Normal Distribution

•
$$X_1, \ldots, X_n$$
 i.i.d. $N(\theta, \sigma^2)$, (unknown variance)
• Parameter $\omega = (\theta, \sigma^2) \in \Omega = (-\infty, +\infty) \times (0, \infty)$
• $\log[f(x_i \mid \theta, \sigma^2)] = -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x_i - \theta)^2$
• $\ell(\omega) = \ell(\theta, \sigma^2) = -\frac{n}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2$

For testing $H_0: \theta = \theta_0$: use the overall mle and the mle given H_0

• Overall mle's:
$$\hat{\theta} = \overline{x}$$
, and $\hat{\sigma}^2 = \sum_{1}^{n} (x_i - \overline{x})^2 / n$
 $\ell(\hat{\theta}, \hat{\sigma}^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\hat{\sigma}^2) - \frac{n}{2}$

• Under
$$H_0: \hat{\theta}_0 = \theta_0$$
, and $\hat{\sigma}_0^2 = \sum_{1}^n (x_i - \theta_0)^2 / n$
 $\ell(\hat{\theta}_0, \hat{\sigma}_0^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\hat{\sigma}_0^2) - \frac{n}{2}$

 $LRStat = 2[\ell(\hat{\theta}, \hat{\sigma}^2) - \ell(\theta_0, \hat{\sigma}_0^2)] = n \ln(\hat{\sigma}_0^2 / \hat{\sigma}_0^2) = n \ln(\hat{\sigma}_0^2 / \hat{\sigma}_0^2)$

Constructing Generalized Likelihood Ratio Tests

Example 2: Test for Mean of a Normal Distribution From before,

$$LRStat = 2[\ell(\hat{\theta}, \hat{\sigma}^2) - \ell(\theta_0, \hat{\sigma}_0^2)] = n \ln(\hat{\sigma}_0^2 / \hat{\sigma}^2)$$

• Note that

$$\hat{\sigma}_{0}^{2} = \frac{1}{n} \sum_{1}^{n} (x_{i} - \theta_{0})^{2} = \frac{1}{n} [\sum_{1}^{n} (x_{i} - \overline{x})^{2} + n(\overline{x} - \theta_{0})^{2}]$$

 $= \hat{\sigma}^{2} + (\overline{x} - \theta_{0})^{2}$
• So *LRStat* = $n \ln \left(1 + \frac{(\overline{x} - \theta_{0})^{2}}{\hat{\sigma}^{2}} \right)$

- *LRStat* is a monotone function of |T|, where $T = \frac{\sqrt{n}(\overline{X} - \theta_0)}{s}$ since $s^2 = n\hat{\sigma}^2/(n-1)$
- Under H_0 $T \sim t$ -distribution on (n-1) degrees of freedom.

Result: Generalized LR Test $\iff t$ Test.

Generalized Likelihood Ratio Tests for Multinomial Distributions

Bernoulli Trials

Multinomial Trials

•
$$M_1, M_2, ..., M_n$$
 i.i.d. $Multinomial(p_1, p_2, ..., p_m)$

• Each M_i has *m* possible outcomes

$$A_1, A_2, \dots, A_m ("cell outcomes") (mutually exclusive and exhaustive)
$$P(M_i = A_j) = p_j, j = 1, \dots, m \text{ where} p_j \ge 0, \text{ for } j = 1, \dots, m \text{ and } \sum_1^m p_j = 1.$$

• Define counts X_1, X_2, \dots, X_m
$$X_1 = \#(M_i \text{ equal to } A_1), \dots, X_m = \#(M_i \text{ equal to } A_m), \text{ and } MIT 18.443 \text{ Testing Hypotheses II}$$$$

Multinomial Distribution

Multinomial Trials (continued)

- The collection of counts follows a Multinomial Distribution n = number of multinomial trials, p = (p₁, p₂,..., p_m) (cell probabilities) the pmf of (X₁, X₂,..., X_m) is P(X₁ = x₁,..., X_m = x_m) = (n!/(x₁!...x_m!) p₁^{x₁} p₂^{x₂} ··· p_m^{x_m})
 The values of x_i are constrained, n = ∑_j x_j.
 The parameter space is Ω = {p : p_i ≥ 0, ∑₁^m p_i = 1}
 - Note: Dimension of Ω is (m-1)
- Single counts are binomial random variables
 E.g., X₁ ~ Binomial(n, p₁), and X₂ ~ Binomial(n, p₂), etc.
- Multiple counts are not independent E.g., $X_1 \equiv n - (X_2 + X_3 + \cdots + X_m)$

▲御▶ ▲理▶ ▲理≯

Examples Using Multinomial Distributions

- Hardy-Weinberg Equilibrium
 - Data consisting of counts of phenotypes: X_1, X_2, X_3
 - Cell probabilities $(1 \theta)^2$, $2\theta(1 \theta) \theta^2$; $0 < \theta < 1$.

Hypothesis: the Hardy-Weinberg model is valid for specific data.

- Counts data from various applications
 - Asbestos fiber counts on slides
 - Counts of Bacterial clumps

Hypothesis: a $Poisson(\lambda)$ model is valid for specific data

- Histogram of sample data
 - The frequency histogram of bin counts follows a multinomial distribution

(for *m* fixed bins in a data histogram)

Hypothesis: the data is a random sample from some fixed distribution or some given family of distributions. (a = b + c = b)

Likelihood Ratio Test for Multinomial Distribution

Null Hypothesis H_0 : A model that specifies the cell probabilities $p_1(\theta), p_2(\theta), ..., p_m(\theta)$

which may vary with a parameter θ (taking values in ω_0) **Alternate Hypothesis** H_1 : General model that assumes

- $p = (p_1, p_2, \dots, p_m)$ is fixed, but unknown
- Only constraint on p is that $\sum_j p_j = 1$ (and $p_j \ge 0$)

Constructing the Likelihood Ratio Test

- Compute mle under H_0 : $\hat{p}_0 = (p_1(\hat{\theta}), \dots, p_m(\hat{\theta}))$ \hat{p}_0 maximizes Lik(p) for $p \in \Omega_0$ where $\Omega_0 = \{p = (p_1(\theta), \dots, p_m(\theta)), \theta \in \omega_0\}$
- Compute overall mle

 $\hat{p} = (\hat{p}_1, \dots, \hat{p}_m)$, where $\hat{p}_j = x_j/n$ for all cells A_j .

• Compute the likelihood ratio

$$\Lambda = \frac{Lik(\hat{p}_0)}{Lik(\hat{p})} = \prod_{j=1}^{m} \left(\frac{p_j(\hat{\theta})}{\hat{p}_j}\right)^{x_j}$$

・ロト ・得ト ・ヨト ・ヨト

Likelihood Ratio Test For Multinomial Distribution

Constructing the Likelihood Ratio Test (continued)

• Compute the likelihood ratio

$$\Lambda = \frac{Lik(\hat{p}_0)}{Lik(\hat{p})} = \prod_{j=1}^m \left(\frac{p_j(\hat{\theta})}{\hat{p}_j}\right)^{\chi_j}$$

• Compute scaled log likelihood ratio:

$$RStat = -2 \times \log(\Lambda)$$

= $2 \sum_{j=1}^{m} x_j \ln(\hat{p}_j/p_j(\hat{\theta}))$
= $2 \sum_{j=1}^{m} O_j \ln(O_j/E_j)$

where $O_j = X_j$ and $E_j = np_j(\hat{ heta})$

• Pearson Chi-Square Statistic

$$ChiSqStat = \sum_{j=1}^{m} \frac{(O_i - E_i)^2}{E_i}$$

• LRStat and ChiSqStat are almost equivalent Use Taylor Series: $f(x) = x \ln(x/x_0) \approx (x - x_0) + \frac{1}{2} \frac{x - x_0^2}{x_0}$

Llikelihood Ratio Test for Multinomial Distribution

LRStat and Pearson's ChiSquare Statistic

•
$$LRStat = 2\sum_{j=1}^{m} O_j \ln(O_j/E_j)$$

where $O_j = X_j$ and $E_j = np_j(\hat{\theta})$
• $ChiSqStat = \sum_{j=1}^{m} \frac{(O_i - E_i)^2}{E_i}$

Asymptotic/Approximate Distribution

- Chi-square distribution with q degrees of freedom
- Degrees of freedom q:

 $q = dim(\Omega) - dim(\omega_0)$ Dimension of $\Omega = \{p\}$ (unconstrained) minus dimension of $\{p\}$ under H_0 ($\theta \in \omega_0$) (Proven in advanced statistics course)

• For Multinomial
$$(X_1, \ldots, X_m)$$
, with $p = (p_1, \ldots, p_m)$
 $dim(\Omega) = m - 1$

Degrees of Freedom for ChiSquare Test Statistic

- For Hardy-Weinberg Model, m = 3, dim(Ω) = (m 1) = 2, and k = dim(ω₀) = 1 so q = m - 1 - k = 1.
- For distribution of *m* set of counts and $\omega_0 = \{Poisson(\lambda), \lambda > 0\}$ $dim(\Omega) = m - 1 \text{ and } k = dim(\omega_0) = 1, \text{ so}$ q = m - 1 - 1 = m - 2
- For distribution of *m* set of counts and

$$\omega_0 = \{Normal(\theta, \sigma^2)\} \text{ distributions.} \\ dim(\Omega) = m - 1 \text{ and } k = dim(\omega_0) = 2, \text{ so} \\ q = m - 1 - 2 = m - 3$$

18.443 Statistics for Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.