Testing Hypotheses II

MIT 18.443
Dr. Kempthorne

Spring 2015

Outline

(1) Hypothesis Testing II

- Duality of Confidence Intervals and Tests
- Generalized Likelihood Ratio Tests

Confidence Intervals and Hypothesis Tests

Example 9.3A

- X_{1}, \ldots, X_{n} i.i.d. $N\left(\mu, \sigma^{2}\right)$, unknown μ, known σ^{2}.
- Test hypotheses: $H_{0}: \mu=\mu_{0}$ vs $H_{1}: \mu \neq \mu_{0}$.
- Use α-level test that rejects H_{0} when $\left|\bar{X}-\mu_{0}\right|>t_{0}$

Critical value: $t_{0}=\sigma_{\bar{X}} z(\alpha / 2)$
Acceptance Region: $\boldsymbol{A}\left(\mu_{0}\right)=\left\{\bar{X}:\left|\bar{X}-\mu_{0}\right|<\sigma_{\bar{X}} \boldsymbol{z}(\alpha / 2)\right\}$
which is equivalent to \bar{X} values satisfying:

$$
\begin{array}{rlcc}
-\sigma_{\bar{X} z} z(\alpha / 2) & <\bar{X}-\mu_{0} & <\overline{\sigma_{\bar{X}} z(\alpha / 2)} \\
\text { or } \bar{X}-\sigma_{\bar{X}} z(\alpha / 2) & <\mu_{0} & <\bar{X}+\sigma_{\bar{X}} z(\alpha / 2)
\end{array}
$$

Confidence Interval for μ :

$$
C(\bar{X})=\left[\bar{X}-\sigma_{\bar{X}} z(\alpha / 2), \bar{X}+\sigma_{\bar{X}^{z}}(\alpha / 2)\right]
$$

(Confidence Level $=100(1-\alpha) \%$)
NOTE: $\bar{X} \in A\left(\mu_{0}\right)$ if and only if $\mu_{0} \in C(\bar{X})(!!)$

Duality of Tests and Confidence Intervals

Theorem 9.3A Suppose

- For every $\theta_{0} \in \Theta$ there is a test at level α of the hypothesis

$$
H_{0}: \theta=\theta_{0}, \text { and }
$$

- $A\left(\theta_{0}\right)$ is the acceptance region of the test.

Then the set

$$
C(\mathbf{X})=\{\theta: \mathbf{X} \in A(\theta)\}
$$

is a $100(1-\alpha) \%$ confidence region for θ.
Proof: Because A is the acceptance region of a level- α test:

$$
P\left[\mathbf{X} \in A\left(\theta_{0}\right) \mid \theta=\theta_{0}\right]=1-\alpha
$$

For a given $\mathbf{X}=\mathbf{x}$,

$$
\begin{array}{r}
\theta_{0} \in C(\mathbf{x}) \Longrightarrow \mathbf{x} \in A\left(\theta_{0}\right) \\
\text { and } \mathbf{x} \in A\left(\theta_{0}\right) \Longrightarrow \theta_{0} \in C(\mathbf{x}), \\
\text { so }\left\{\mathbf{x} \in A\left(\theta_{0}\right)\right\} \equiv\left\{\mathbf{x}: C(\mathbf{x}) \ni \theta_{0}\right\} . \\
\Longrightarrow P\left[C(\mathbf{X}) \ni \theta_{0} \mid \theta=\theta_{0}\right]=1-\alpha .
\end{array}
$$

Duality of Tests and Confidence Intervals

Theorem 9.3B Suppose

- $C(\mathbf{X})$ is a $100(1-\alpha) \%$ confidence region for θ, i.e., for every θ_{0}

$$
P\left[C(\mathbf{X}) \ni \theta_{0} \mid \theta=\theta_{0}\right)=1-\alpha
$$

Then, an acceptance region for a test at level α of the hypothesis $H_{0}: \theta=\theta_{0}$ can be constructed as:

$$
A\left(\theta_{0}\right)=\left\{\mathbf{X}: C(\mathbf{X}) \ni \theta_{0}\right\}
$$

Proof: Because $\left\{\mathbf{x}: C(\mathbf{x}) \ni \theta_{0}\right\} \equiv\left\{\mathbf{x} \in A\left(\theta_{0}\right)\right\}$,

$$
\Longrightarrow P\left[\left\{\mathbf{x} \in A\left(\theta_{0}\right)\right\}\right]=P\left[C(\mathbf{X}) \ni \theta_{0} \mid \theta=\theta_{0}\right]=1-\alpha
$$

Outline

(1) Hypothesis Testing II

- Duality of Confidence Intervals and Tests
- Generalized Likelihood Ratio Tests

Generalized Likelihood Ratio Tests

Likelihood Analysis Framework

- Data observations: $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- Joint distribution of \mathbf{X} given by joint pdf/pmf

$$
f(\mathbf{x} \mid \theta), \theta \in \Theta
$$

- Null and Alternative Hypotheses

$$
H_{0}: \theta \in \Theta_{0}, \text { and } H_{1}: \theta \notin \Theta_{0},
$$

for some proper subset $\Theta_{0} \subset \Theta$.

- The MLE of θ solves: $\operatorname{lik}(\hat{\theta})=\max _{\theta \in \Theta} \operatorname{lik}(\theta)$ where lik $(\theta)=f(\mathbf{x} \mid \theta)$ (a function of θ given data \mathbf{x})
- The MLE of θ under H_{0} solves $\operatorname{lik}\left(\hat{\theta}_{0}\right)=\max _{\theta \in \Theta_{0}} \operatorname{lik}(\theta)$.

Definition: The generalized likelihood ratio

$$
\left.\Lambda=\frac{\operatorname{lik}\left(\hat{\theta}_{0}\right)}{\operatorname{lik}(\hat{\theta})} \quad \text { (for testing } H_{0} \text { vs } H_{1}\right)
$$

Generalized Likelihood Ratio Test

- Generalized likelihood ratio for testing H_{0} vs H_{1} :

$$
\Lambda=\frac{\operatorname{lik}\left(\hat{\theta}_{0}\right)}{\operatorname{lik}(\hat{\theta})}
$$

- Properties of Λ

$$
\begin{array}{ll}
\Lambda>0, & \text { since } \operatorname{lik}(\theta)>0 \\
\Lambda \leq 1, & \text { because } \operatorname{lik}(\hat{\theta}) \geq \operatorname{lik}\left(\theta_{0}\right)
\end{array}
$$

- Higher values of Λ are evidence in favor H_{0}
- Lower values of Λ are evidence against H_{0}
- Rejection Region of Generalized Likelihood Ratio Test:

$$
\left\{\mathbf{x}: \Lambda<\lambda_{0}\right\} \text { for some } \lambda_{0}
$$

- For level- α test of simple H_{0} choose λ_{0} :

$$
P\left(\Lambda<\lambda_{0} \mid H_{0}\right)=\alpha
$$

- If H_{0} is composite, then choose largest λ_{0} :

$$
P\left(\Lambda<\lambda_{0} \mid \theta\right) \leq \alpha, \text { for all } \theta \in \Theta_{0}
$$

Generalized Likelihood Ratio Test

Define LRStat by Rescaling the Likelihood Ratio

$$
L R S t a t=-2 \times \log (\Lambda)=-2 \times \log \left[\frac{\operatorname{lik}\left(\hat{\theta}_{0}\right)}{\operatorname{lik}(\hat{\theta})}\right]
$$

- Since $0<\Lambda<1$,

$$
L R S t a t>0
$$

Evidence against H_{0} given by high values of $L R S t a t$.

- For simple $H_{0}: \theta=\theta_{0}$,

$$
L R S t a t=2\left[\ell(\hat{\theta})-\ell\left(\theta_{0}\right)\right]
$$

- From asymptotic theory

$$
\ell\left(\theta_{0}\right) \approx \ell(\hat{\theta})+\left(\theta_{0}-\hat{\theta}\right) \ell^{\prime}(\hat{\theta})+\frac{1}{2}\left(\theta_{0}-\hat{\theta}\right)^{2} \ell^{\prime \prime}(\hat{\theta})
$$

so LRStat $\approx\left[\hat{\theta}-\theta_{0}\right]^{2} \times\left[-\ell^{\prime \prime}(\hat{\theta})\right]$

$$
\begin{aligned}
& \underset{\mathcal{D}}{=}\left[\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)^{2}\right] \times\left[-\ell^{\prime \prime}(\hat{\theta}) / n\right] \\
& \\
& \left.n \mathrm{I}\left(\theta_{0}\right)\left(\hat{\theta}-\theta_{0}\right)^{2}\right] \sim[N(0,1)]^{2} \sim \chi_{1}^{2}
\end{aligned}
$$

Constructing Generalized Likelihood Ratio Tests

Test Statistic for Generalized Likelihood Ratio Test
LRStat $=-2 \log (\Lambda)=-2 \times \log \left[\frac{l i k\left(\hat{\theta}_{0}\right)}{\operatorname{lik}(\hat{\theta})}\right]$

$$
=2 \times\left[\ell(\hat{\theta})-\ell\left(\hat{\theta}_{0}\right)\right]
$$

Example 1: Test for Mean of Normal Distribution

- X_{1}, \ldots, X_{n} i.i.d. $N\left(\theta, \sigma^{2}\right)$, (known variance)
- $\log \left[f\left(x_{i} \mid \theta\right)\right]=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{i}-\theta\right)^{2}$
- $\ell(\theta)=\sum_{i=1}^{n} \log \left[f\left(x_{i} \mid \theta\right)\right]=-\frac{n}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}$

For testing $H_{0}: \theta=\theta_{0}$

$$
\text { LRStat }=2\left[\ell(\hat{\theta})-\ell\left(\theta_{0}\right)\right]=\frac{1}{\sigma^{2}}\left[-\sum_{1}^{n}\left(x_{i}-\hat{\theta}\right)^{2}+\sum_{1}^{n}\left(x_{i}-\theta_{0}\right)^{2}\right]
$$

- Note that

$$
\begin{aligned}
\sum_{1}^{n}\left(x_{i}-\theta_{0}\right)^{2} & =\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n\left(\bar{x}-\theta_{0}\right)^{2} \\
& =\sum_{1}^{n}\left(x_{i}-\hat{\theta}\right)^{2}+n\left(\bar{x}-\theta_{0}\right)^{2}
\end{aligned}
$$

- So LRStat $=\frac{n\left(\bar{x}-\theta_{0}\right)^{2}}{\sigma^{2}}$
$\sim N(0,1)$ under H_{0}

Constructing Generalized Likelihood Ratio Tests

Test Statistic for Generalized Likelihood Ratio Test
LRStat $=-2 \log (\Lambda)=-2 \times \log \left[\frac{\operatorname{lik}\left(\hat{\omega}_{0}\right)}{\operatorname{lik}(\hat{\omega})}\right]$

$$
=2 \times\left[\ell(\hat{\omega})-\ell\left(\hat{\omega}_{0}\right)\right]
$$

Example 2: Test for Mean of Normal Distribution

- X_{1}, \ldots, X_{n} i.i.d. $N\left(\theta, \sigma^{2}\right)$, (unknown variance)
- Parameter $\omega=\left(\theta, \sigma^{2}\right) \in \Omega=(-\infty,+\infty) \times(0, \infty)$
- $\log \left[f\left(x_{i} \mid \theta, \sigma^{2}\right)\right]=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{i}-\theta\right)^{2}$
- $\ell(\omega)=\ell\left(\theta, \sigma^{2}\right)=-\frac{n}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}$

For testing $H_{0}: \theta=\theta_{0}$: use the overall mle and the mle given H_{0}

- Overall mle's: $\hat{\theta}=\bar{x}$, and $\hat{\sigma}^{2}=\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n$

$$
\ell\left(\hat{\theta}, \hat{\sigma}^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\hat{\sigma}^{2}\right)-\frac{n}{2}
$$

- Under $H_{0}: \hat{\theta}_{0}=\theta_{0}$, and $\hat{\sigma}_{0}^{2}=\sum_{1}^{n}\left(x_{i}-\theta_{0}\right)^{2} / n$

$$
\ell\left(\hat{\theta}_{0}, \hat{\sigma}_{0}^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\hat{\sigma}_{0}^{2}\right)-\frac{n}{2}
$$

LRStat $=2\left[\ell\left(\hat{\theta}, \hat{\sigma}^{2}\right)-\ell\left(\theta_{0}, \hat{\sigma}_{0}^{2}\right)\right]=n \ln \left(\hat{\sigma}_{0}^{2} / \hat{\sigma}^{2}\right)$

Constructing Generalized Likelihood Ratio Tests

Example 2: Test for Mean of a Normal Distribution
From before,

$$
\text { LRStat }=2\left[\ell\left(\hat{\theta}, \hat{\sigma}^{2}\right)-\ell\left(\theta_{0}, \hat{\sigma}_{0}^{2}\right)\right]=n \ln \left(\hat{\sigma}_{0}^{2} / \hat{\sigma}^{2}\right)
$$

- Note that

$$
\begin{aligned}
\hat{\sigma}_{0}^{2} & =\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\theta_{0}\right)^{2}=\frac{1}{n}\left[\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n\left(\bar{x}-\theta_{0}\right)^{2}\right] \\
& =\hat{\sigma}^{2}+\left(\bar{x}-\theta_{0}\right)^{2}
\end{aligned}
$$

- So LRStat $=n \ln \left(1+\frac{\left(\bar{x}-\theta_{0}\right)^{2}}{\hat{\sigma}^{2}}\right)$
- LRStat is a monotone function of $|T|$, where

$$
T=\frac{\sqrt{n}\left(\bar{X}-\theta_{0}\right)}{s}
$$

since $s^{2}=n \hat{\sigma}^{2} /(n-1)$

- Under $H_{0} T \sim t$-distribution on $(n-1)$ degrees of freedom.

Result: Generalized LR Test $\Longleftrightarrow t$ Test.

Generalized Likelihood Ratio Tests for Multinomial Distributions

Bernoulli Trials

- $B_{1}, B_{2}, \ldots, B_{n}$ i.i.d. Bernoulli(p)

$$
P\left(B_{i}=1 \mid p\right)=p=1-P\left(B_{i}=0 \mid p\right)
$$

- $X=B_{1}+B_{2}+\cdots B_{n}$, count of Bernoulli successes.
- $X \sim \operatorname{Binomial}(n, p)$

Multinomial Trials

- $M_{1}, M_{2}, \ldots, M_{n}$ i.i.d. Multinomial $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$
- Each M_{i} has m possible outcomes

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots, A_{m} \text { ("cell outcomes") } \\
& \quad \text { (mutually exclusive and exhaustive) } \\
& P\left(M_{i}=A_{j}\right)=p_{j}, j=1, \ldots, m \text { where } \\
& \quad p_{j} \geq 0, \text { for } j=1, \ldots, m \text { and } \sum_{1}^{m} p_{j}=1 .
\end{aligned}
$$

- Define counts $X_{1}, X_{2}, \ldots, X_{m}$

$$
X_{1}=\#\left(M_{i} \text { equal to } A_{1}\right), \ldots, X_{m}=\#\left(M_{i} \text { equal to } A_{m}\right)
$$

Multinomial Distribution

Multinomial Trials (continued)

- The collection of counts follows a Multinomial Distribution

$$
\begin{aligned}
& n=\text { number of multinomial trials, } \\
& p=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \text { (cell probabilities) }
\end{aligned}
$$

the pmf of $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is

$$
P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}\right)=\left(\frac{n!}{x_{1}!\cdots x_{m}!}\right) p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}
$$

- The values of x_{i} are constrained, $n=\sum_{j} x_{j}$.
- The parameter space is $\Omega=\left\{p: p_{j} \geq 0, \sum_{1}^{m} p_{j}=1\right\}$

Note: Dimension of Ω is $(m-1)$

- Single counts are binomial random variables E.g., $X_{1} \sim \operatorname{Binomial}\left(n, p_{1}\right)$, and $X_{2} \sim \operatorname{Binomial}\left(n, p_{2}\right)$, etc.
- Multiple counts are not independent
E.g., $X_{1} \equiv n-\left(X_{2}+X_{3}+\cdots X_{m}\right)$

Examples Using Multinomial Distributions

- Hardy-Weinberg Equilibrium
- Data consisting of counts of phenotypes: X_{1}, X_{2}, X_{3}
- Cell probabilities $(1-\theta)^{2}, 2 \theta(1-\theta) \theta^{2} ; 0<\theta<1$.

Hypothesis: the Hardy-Weinberg model is valid for specific data.

- Counts data from various applications
- Asbestos fiber counts on slides
- Counts of Bacterial clumps

Hypothesis: a Poisson (λ) model is valid for specific data

- Histogram of sample data
- The frequency histogram of bin counts follows a multinomial distribution (for m fixed bins in a data histogram)
Hypothesis: the data is a random sample from some fixed distribution or some given family of distributions.

Likelihood Ratio Test for Multinomial Distribution

Null Hypothesis H_{0} : A model that specifies the cell probabilities

$$
p_{1}(\theta), p_{2}(\theta), \ldots, p_{m}(\theta)
$$

which may vary with a parameter θ (taking values in ω_{0}) Alternate Hypothesis H_{1} : General model that assumes

- $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is fixed, but unknown
- Only constraint on p is that $\sum_{j} p_{j}=1$ (and $\left.p_{j} \geq 0\right)$

Constructing the Likelihood Ratio Test

- Compute mle under $H_{0}: \hat{p}_{0}=\left(p_{1}(\hat{\theta}), \ldots, p_{m}(\hat{\theta})\right)$ \hat{p}_{0} maximizes $\operatorname{Lik}(p)$ for $p \in \Omega_{0}$ where $\Omega_{0}=\left\{p=\left(p_{1}(\theta), \ldots, p_{m}(\theta)\right), \theta \in \omega_{0}\right\}$
- Compute overall mle

$$
\hat{p}=\left(\hat{p}_{1}, \ldots, \hat{p}_{m}\right), \text { where } \hat{p}_{j}=x_{j} / n \text { for all cells } A_{j} .
$$

- Compute the likelihood ratio

$$
\Lambda=\frac{\operatorname{Lik}\left(\hat{p}_{0}\right)}{\operatorname{Lik}(\hat{p})}=\prod_{j=1}^{m}\left(\frac{p_{j}(\hat{\theta})}{\hat{p}_{j}}\right)^{x_{j}}
$$

Likelihood Ratio Test For Multinomial Distribution

Constructing the Likelihood Ratio Test (continued)

- Compute the likelihood ratio

$$
\Lambda=\frac{\operatorname{Lik}\left(\hat{p}_{0}\right)}{\operatorname{Lik}(\hat{p})}=\prod_{j=1}^{m}\left(\frac{p_{j}(\hat{\theta})}{\hat{p}_{j}}\right)^{x_{j}}
$$

- Compute scaled log likelihood ratio:

$$
\begin{aligned}
\text { LRStat } & =-2 \times \log (\Lambda) \\
& =2 \sum_{j=1}^{m} x_{j} \ln \left(\hat{p}_{j} / p_{j}(\hat{\theta})\right) \\
& =2 \sum_{j=1}^{m} O_{j} \ln \left(O_{j} / E_{j}\right)
\end{aligned}
$$

where $O_{j}=X_{j}$ and $E_{j}=n p_{j}(\hat{\theta})$

- Pearson Chi-Square Statistic

$$
\text { ChiSqStat }=\sum_{j=1}^{m} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- LRStat and ChiSqStat are almost equivalent Use Taylor Series: $f(x)=x \ln \left(x / x_{0}\right) \approx\left(x-x_{0}\right)+\frac{1}{2} \frac{x-x_{0}{ }^{2}}{x_{0}}$

Llikelihood Ratio Test for Multinomial Distribution

LRStat and Pearson's ChiSquare Statistic

- LRStat $=2 \sum_{j=1}^{m} O_{j} \ln \left(O_{j} / E_{j}\right)$ where $O_{j}=X_{j}$ and $E_{j}=n p_{j}(\hat{\theta})$
- ChiSqStat $=\sum_{j=1}^{m} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$

Asymptotic/Approximate Distribution

- Chi-square distribution with q degrees of freedom
- Degrees of freedom q :

$$
q=\operatorname{dim}(\Omega)-\operatorname{dim}\left(\omega_{0}\right)
$$

Dimension of $\Omega=\{p\}$ (unconstrained) minus dimension of $\{p\}$ under $H_{0}\left(\theta \in \omega_{0}\right)$
(Proven in advanced statistics course)

- For Multinomial $\left(X_{1}, \ldots, X_{m}\right)$, with $p=\left(p_{1}, \ldots, p_{m}\right)$

$$
\operatorname{dim}(\Omega)=m-1
$$

Degrees of Freedom for ChiSquare Test Statistic

- For Hardy-Weinberg Model, $m=3, \operatorname{dim}(\Omega)=(m-1)=2$, and $k=\operatorname{dim}\left(\omega_{0}\right)=1$ so

$$
q=m-1-k=1
$$

- For distribution of m set of counts and

$$
\begin{aligned}
\omega_{0}=\{ & \operatorname{Poisson}(\lambda), \lambda>0\} \\
& \operatorname{dim}(\Omega)=m-1 \text { and } k=\operatorname{dim}\left(\omega_{0}\right)=1, \text { so } \\
& q=m-1-1=m-2
\end{aligned}
$$

- For distribution of m set of counts and $\omega_{0}=\left\{\operatorname{Normal}\left(\theta, \sigma^{2}\right)\right\}$ distributions.

$$
\begin{aligned}
& \operatorname{dim}(\Omega)=m-1 \text { and } k=\operatorname{dim}\left(\omega_{0}\right)=2, \text { so } \\
& q=m-1-2=m-3
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

