18.443 Exam 1 Spring 2015
 Statistics for Applications
 3/5/2015

1. Log Normal Distribution: A random variable X follows a $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$ distribution if $Y=\ln (X)$ follows a $\operatorname{Normal}\left(\theta, \sigma^{2}\right)$ distribution.
For the normal random variable $Y=\ln (X)$

- The probability density function of Y is

$$
f\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(y-\theta)^{2}}{\sigma^{2}}}, \quad-\infty<y<\infty
$$

- The moment-generating function of Y is

$$
M_{Y}(t)=E\left[e^{t Y} \mid \theta, \sigma^{2}\right]=e^{t \theta+\frac{1}{2} \sigma^{2} t^{2}}
$$

(a). Compute the first two moments of a random variable $X \sim$ $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$.

$$
\mu_{1}=E\left[X \mid \theta, \sigma^{2}\right] \text { and } \mu_{2}=E\left[X^{2} \mid \theta\right]
$$

Hint: Note that $X=e^{Y}$ and $X^{2}=e^{2 Y}$ where $Y \sim N\left(\theta, \sigma^{2}\right)$ and use the moment-generating function of Y.
(b). Suppose that X_{1}, \ldots, X_{n} is an i.i.d. sample from the $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$ distribution of size n. Find the method of moments estimates of θ and σ^{2}.
Hint: evaluate μ_{2} / μ_{1}^{2} and find a method-of-moments estimate for σ^{2} first.
(c). For the log-normal random variable $X=e^{Y}$, where

$$
Y \sim \operatorname{Normal}\left(\theta, \sigma^{2}\right),
$$

prove that the probability density of X is

$$
f\left(x \mid \theta, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}}\left(\frac{1}{x}\right) e^{-\frac{1}{2} \frac{(\ln (x)-\theta)^{2}}{\sigma^{2}}}, \quad 0<x<\infty .
$$

(d). Suppose that X_{1}, \ldots, X_{n} is an i.i.d. sample from the $\operatorname{Lognormal}\left(\theta, \sigma^{2}\right)$ distribution of size n. Find the mle for θ assuming that σ^{2} is known to equal σ_{0}^{2}.
(e). Find the asymptotic variance of the mle for θ in (d).
2. The Pareto distribution is used in economics to model values exceeding a threshhold (e.g., liability losses greater than $\$ 100$ million for a consumer products company). For a fixed, known threshhold value of $x_{0}>0$, the density function is

$$
f\left(x \mid x_{0}, \theta\right)=\theta x_{0}^{\theta} x^{-\theta-1}, \quad x \geq x_{0}, \text { and } \theta>1 .
$$

Note that the cumulative distribution function of X is

$$
P(X \leq x)=F_{X}(x)=1-\left(\frac{x}{x_{0}}\right)^{-\theta} .
$$

(a). Find the method-of-moments estimate of θ.
(b). Find the mle of θ.
(c). Find the asymptotic variance of the mle.
(d). What is the large-sample asymptotic distribution of the mle?
3. Distributions derived from Normal random variables. Consider two independent random samples from two normal distributions:

- X_{1}, \ldots, X_{n} are n i.i.d. $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ random variables.
- Y_{1}, \ldots, Y_{m} are m i.i.d. $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ random variables.
(a). If $\mu_{1}=\mu_{2}=0$, find two statistics

$$
\begin{aligned}
& T_{1}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) \\
& T_{2}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)
\end{aligned}
$$

each of which is a t random variable and which are statistically independent. Explain in detail why your answers have a t distribution and why they are independent.
(b). If $\sigma_{1}^{2}=\sigma_{2}^{2}>0$, define a statistic

$$
T_{3}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)
$$

which has an F distribution.
An F distribution is determined by the numerator and denominator degrees of freedom. State the degrees of freedom for your statistic T_{3}.
(c). For your answer in (b), define the statistic

$$
T_{4}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)=\frac{1}{T_{3}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)}
$$

What is the distribution of T_{4} under the conditions of (b)?
(d). Suppose that $\sigma_{1}^{2}=\sigma_{2}^{2}$. If $S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, and $S_{Y}^{2}=$ $\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}$, are the sample variances of the two samples, show how to use the F distribution to find

$$
P\left(S_{X}{ }^{2} / S_{Y}^{2}>c\right)
$$

(e). Repeat question (d) if it is known that $\sigma_{1}^{2}=2 \sigma_{2}^{2}$.

4. Hardy-Weinberg (Multinomial) Model of Gene Frequencies

For a certain population, gene frequencies are in equilibrium: the genotypes $A A, A a$, and $a a$ occur with probabilities $(1-\theta)^{2}, 2 \theta(1-\theta)$, and θ^{2}. A random sample of 50 people from the population yielded the following data:

Genotype		
AA	Aa	aa
35	10	5

The table counts can be modeled as the multinomial distribution:

$$
\left(X_{1}, X_{2}, X_{3}\right) \sim M u l t i n o m i a l\left(n=50, p=\left((1-\theta)^{2}, 2 \theta(1-\theta), \theta^{2}\right)\right.
$$

(a). Find the mle of θ
(b). Find the asymptotic variance of the mle.
(c). What is the large sample asymptotic distribution of the mle?
(d). Find an approximate 90% confidence interval for θ. To construct the interval you may use the follow table of cumulative probabilities for a standard normal $N(0,1)$ random variable Z

$P(Z<z)$	z
0.99	2.326
0.975	1.960
0.950	1.645
0.90	1.182

(e). Using the mle $\hat{\theta}$ in (a), 1000 samples from the

$$
\operatorname{Multinomial}\left(n=50, p=\left((1-\hat{\theta})^{2}, 2 \hat{\theta}(1-\hat{\theta}), \hat{\theta}^{2}\right)\right)
$$

distribution were randomly generated, and mle estimates were computed for each sample: $\hat{\theta}_{j}^{*}, j=1, \ldots, 1000$.
For the true parameter θ_{0}, the sampling distribution of $\Delta=\hat{\theta}-\theta_{0}$ is approximated by that of $\tilde{\Delta}=\hat{\theta}^{*}-\hat{\theta}$. The 50 -th largest value of $\tilde{\Delta}$ was +0.065 and the 50 -th smallest value was -0.067 .
Use this information and the estimate in (a) to construct a (parametric) bootstrap confidence interval for the true θ_{0}. What is the confidence level of the interval? (If you do not have an answer to part (a), assume the mle $\hat{\theta}=0.25$).

MIT OpenCourseWare
http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

