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Lecture 16: Quantum Error Correction 

Scribed by: Dah-Yoh Lim 

October 30, 2003 

1 Introduction 

Today we are going to look at how one can do error correction in the quantum world. In the 
PreShannon days, simple repetition codes were used: to transmit bit 0, it is first encoded into a 
string of zeros, say 0000. Similarly, 1 gets encoded into 1111. One can prove that if you want to 
reduce the error rate to 1/n, and the channel flips bits with probability 1/�, then you need roughly 

log n 
log(1/�) repetitions. 

2 Quantum Analog to Repetition Code 

The analog to the repetition code is to say encode 0� as 000 and 1 as 111 . Note that this is 
not the same as copying/cloning the bit, since in the quantum world we know that cloning is not 
possible. 

So for instance, under this encoding E the EPR state


( 000 + 111 ). 
2
| � | �1 √

1 √ ( 0 + 1 ) would be encoded as 
2
| � | �

2.1 Bit Errors 

Suppose there is a bit error σX at the third qubit. 

σ
(3) 

σ
(3) 

E(|0�) = X ( 000 ) = 001 .X 

Similarly, 

σ
(3) 

σ
(3) 

E(|1�) = X ( 111 ) = 110 .X 

To correct bit errors, simply project onto the subspaces { 000 , 111 001�, 110 010 , 100�}, 
100 , 011�}. 

2.2 Phase Errors 

Suppose there is a phase error σZ . 

1 
σ

(j)
E( 

1
( 0� + 1 )) = σ

(j) 1
( 000 + 111 ) = E( ( 1 )),Z Z√

2
| | � √

2
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2
|0� − | �

for j = 1, 2, 3. Therefore, if we use this code, single bit errors can be corrected but phase errors will 
be come 3 times more likely! 
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Recall that 
1 1 1 

.H ≡ √
2 1 −1 

This takes bit errors to phase errors. If we apply H to the 3-qubit protection code, we get: 

1 1 
( 0 + 1 ) → ( 000� + ... + 111�),√

2
| � | �

2
√

2
| |

and 
1 1 

( 0 1 ) → ( 000� − 001� + ... − 111�),√
2
| � − | �

2
√

2
| | |

with a negative sign iff the string contains an odd number of 1s. 
Now consider the following 3-qubit phase error correcting code: 

1 
( 000 + 011 + 101 + 110 ),|0� →

2
| � | � | � | �

and 
1 
( 011 + 100 + 010 + 001 ).|1� →

2
| � | � | � | �


Now if there is a phase error on the first qubit:


σ
(1) 
Zσ

(1) 
E( 0�) = ( 000 + 011 + 101 + 110 )Z |

2 
| � | � | � | �

1 
= ( 000� + 011 110 ). 

2
| | � − |101� − | �

Next, note that σ
(i)

E( 0�) and σ
(i)

E( 1�) are orthogonal, for i = 1, 2, 3. Therefore, to correct Z | Z |
phase errors we can project onto the four subspaces {σ(i)

E( 0�), σ(i)
E( 1 )} and {E( 0 ), E( .Z | Z | � | � |1�)}

Now we have a code that corrects phase error but not bit errors. 

2.3 Bit and Phase Errors 

If we concatenate the codes that corrected bit and phase errors respectively, then we can get a code 
that corrects both errors. Consider: 

1 
E( 0 ) = ( 000000000 + 000111111 + 111000111 + 111111000�)| �

2
| � | � | � |

1 
E( 1�) = ( 111111111� + 111000000� + 000111000 + 000000111 ).|

2
| | | � | �

It is easy to see that this corrects bit errors. Note that the error correcting procedure does not 
collapse the superposition, so it can be applied to superpositions as well. There is a continuum of 

α β 
that one can apply to the 1st qubit. 

γ δ 

e−iθ 
� 

1 0 0

In general, phase errors can be expressed as = eiθ ≡ Rθ.


0 e2iθ 0 eiθ 
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1 
Rθ( ( 000� + 011� + 101� + 110�)) 

2
| | | |

iθ=
1
(e−iθ|000� + e−iθ 011 + e |101 + e iθ 110 )

2
e−iθ 1 eiθ + 

= ( 000 + 011 + 101 + 110 ) +
1 −eiθ + e−iθ 

( 000� + 011 110 )
2 2 

| � | � | � | �
2 2 

| | � − |101� − | �

= cos θE( 0�) − i sin θσ
(1) 

E( 0�),Z ||

i.e. phase error on the 1st qubit. 
� � 

α β 
With our 9-qubit code, let’s say we apply to some qubit. Since 

γ δ 

α β α + δ
I + 

α − δ
σZ + 

β + γ β − γ 
= σX + i σY ,

2 2 2γ δ 2 

we can separate its operation on ηE 0 + µE 1� as follows: 

α β

(ηE 0 + µE 1�)


γ δ 
| � |


= 
α + δ 

(ηE|0� + µE 1 ) + 
α − δ

σZ(ηE 0 + µE 1 )
2 

| �
2 

| � | �

+ 
β + γ

σX(ηE 0 + µE 1 ) + i
β − γ

σY (ηE 0 + µE 1�). 
2 

| � | �
2 

| � |

However, we know that projection onto φ� is equivalent to applying the projection matrix φ ;φ�
therefore, we see that the code corrects phase errors too. 

3 7 bit Hamming Code 

The Hamming code encodes 4 bits into 7 bits. The 24 codewords are: 
S0 S1 

0000000 1111111 
1110100 1011000 
0111010 0101100 
0011101 0010110 
1001110 0001011 
0100111 1000101 
1010011 1100010 
1101001 0110001 

Recall that a linear code is a code where the sum of two codewords (mod 2) is another codeword. 
The Hamming code is a linear code, i.e. one can chose 4 basis elements generated by GC = 
⎡ ⎤ 

1 1 1 1 1 1 1

1 1 0 1 0
⎢ 1 0 ⎥ 

⎢ ⎥, where the rowspace of this matrix gives all the codewords. The parity 
⎣ 0 ⎦1 1 1 0 1 0


0 0 1 1 1 0 1
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⎡ ⎤ 

1 1 1 0 1 0 0 
check matrix is HC = ⎣ 0 1 1 1 0 1 0 ⎦, which is exactly the generator matrix for the dual 

0 0 1 1 1 0 1 
code (the set of vectors orthogonal to every vector in the code C). 

3.1 Quantum Hamming Code 

The quantum analog of the Hamming Code is as follows: 

1 1 
Σ v ; Σ v + e�,|0� → 

23/2 v∈HC

| � |1� → 
23/2 v∈HC

|

where e is the string of all 1s. 
Note that this corrects σX on any qubit (because of the properties of the Hamming code). Also, 

if we apply the Hadamard transformation to the quantum Hamming code, we can correct phase 
errors as well: 

H⊗7E|0� =
1 

Σ H⊗7 v
23/2 v∈HC 

| � 

27 −11 1 v = Σ Σ (−1)x· x
23/2 27/2 x=0 v∈HC 

| � 

1 
= 23 Σ x

27/2 x∈GC

| � 

1 
= (E 0 + E 1�).√

2
| � |

H⊗7E|1� =
1 

Σ H⊗7 v + e�
23/2 v∈HC 

|

27 −1 
=

1 1
Σ Σ (−1)x·(v+e)

23/2 27/2 x=0 v∈HC 

|x� 

1 e = 23 Σ (−1)x· x
27/2 x∈GC 

| � 

1 
= (E 0 − E 1�)√

2
| � |

= EH 1�.|

So, the σX and σZ errors are “independent”, and therefore this code can correct σX error in 
any qubit and σZ error in any other qubit. 


