Lecture 14: Cluster States

Scribed by: Ilia Mirkin
Department of Mathematics, MIT

October 21, 2003

A cluster state is a highly entangled rectangular array of qubits. We measure qubits one at a time. The wiring diagram tells us which basis to measure each qubit in, and which order to measure them in. A wiring diagram is represented by connecting up the dots (which represent qubits) with lines. A junction of two separate lines represents a gate. These gates do not have to be unitary, but if done right, are.

Figure 1: Unconnected cluster states

Figure 2: Wiring diagram for two gates
Measurement on a wiring diagram is done by first measuring all the qubits that are not in the wiring diagram (i.e. unconnected) in the σ_{z} basis. Once those qubits are measured, we measure the qubits in the circuit from left to right in the specified basis.

Cluster state given by eigenvalue equations. The neighborhood of a qubit are the up, down, left, and right qubits.

$$
\begin{equation*}
K^{(a)}=\sigma_{x}^{(a)} \otimes \bigotimes_{b} \sigma_{z}^{(b)} \mid b \in \operatorname{neighborhood}(a) \tag{1}
\end{equation*}
$$

The claim is that $K^{(a)}$ commutes with $K^{(b)}$ when $a \neq b$. To show that this is true, we can look at the following cases:

$$
\begin{equation*}
\operatorname{neighborhood}(a) \cap \text { neighborhood }(b)=\emptyset \tag{2}
\end{equation*}
$$

When this is true, then there is absolutely no overlap between $K^{(a)}$ and $K^{(b)}$ and thus the two commute.

$$
\begin{equation*}
\text { neighborhood }(a) \not \supset b \tag{3}
\end{equation*}
$$

This means that neighborhoods overlap, but that the qubit b is not in the neighborhood of a in an arrangement such as

$$
\begin{array}{ccccc}
. & a_{u} & . & . \\
a_{l} & a & a_{r} & b \\
. & a_{d} & & &
\end{array}
$$

Figure 3: Neighborhoods overlap

$$
\begin{align*}
K^{(a)} & =\sigma_{x}^{(a)} \otimes \sigma_{z}^{\left(a_{r}\right)} \otimes \cdots \tag{4}\\
K^{(b)} & =\sigma_{x}^{(b)} \otimes \sigma_{z}^{\left(a_{r}\right)} \otimes \cdots \tag{5}\\
K^{(a)} K^{(b)} & =\sigma_{x}^{(a)} \otimes \sigma_{z}^{\left(a_{r}\right)} \otimes \cdots \otimes \sigma_{x}^{(b)} \otimes \sigma_{z}^{\left(a_{r}\right)} \otimes \cdots \tag{6}
\end{align*}
$$

And in the third case, a and b are adjacent to each other.

$$
\begin{array}{ccccc}
& a_{u} & . & . \\
a_{l} & a & b & b_{r} \\
. & a_{d} & . & .
\end{array}
$$

Figure 4: a and b are adjacent

$$
\begin{equation*}
K^{(a)} K^{(b)}=\sigma_{x}^{(a)} \otimes \sigma_{z}^{(b)} \otimes \cdots \otimes \sigma_{x}^{(a)} \sigma_{z}^{(b)} \cdots \tag{7}
\end{equation*}
$$

In all three cases $K^{(a)}$ and $K^{(b)}$ both commute, so the claim holds. This means that $K^{(a)}$ are all simultaneously diagonalizable. Any simultaneous eigenvector of $K^{(a)}, a \in C$ (cluster) is a cluster state. Each $K^{(a)}$ has eigenvalue ± 1, making for 2^{n} vectors of eigenvalues $\left\{K_{a}\right\}$. $\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C}$ is a cluster state with eigenvalue κ_{a} on qubit $a,\left\{\kappa_{a}\right\}=\{ \pm 1\}$. Thus $\left\langle\phi_{\left\{\kappa_{a}\right\}} \mid \phi_{\left\{\kappa_{a}^{\prime}\right\}}\right\rangle_{C}=$ 0 if $\left\{\kappa_{a}\right\} \neq\left\{\kappa_{a}^{\prime}\right\}$. For example,

$$
\begin{align*}
\kappa_{b} & =+1 \tag{8}\\
\kappa_{a} & =-1 \tag{9}\\
\left\langle\phi_{\left\{\kappa_{a}\right\}} \mid \phi_{\left\{\kappa_{a}^{\prime}\right\}}\right\rangle_{C}=-\left\langle\phi_{\left\{\kappa_{a}\right\}}\right| K_{b}\left|\phi_{\left\{\kappa_{a}^{\prime}\right\}}\right\rangle_{C} & =-\left\langle\phi_{\left\{\kappa_{a}\right\}} \mid \phi_{\left\{\kappa_{a}^{\prime}\right\}}\right\rangle_{C}=0 \tag{10}
\end{align*}
$$

If $\left\{\kappa_{a}\right\}=\left\{\kappa_{a}^{\prime}\right\}$ except for $\kappa_{b}=-\kappa_{b}^{\prime}$, then $\sigma_{z}^{(b)}\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C}=\left|\phi_{\left\{\kappa_{a}^{\prime}\right\}}\right\rangle_{C}$

$$
\begin{align*}
K_{a} \sigma_{z}^{(b)}\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C} & =(-1)^{\delta_{a b}} \sigma_{z}^{(b)} K_{a}\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C} \tag{11}\\
& =(-1)^{\delta_{a b}} \sigma_{z}^{(b)} \kappa_{a}\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C} \tag{12}\\
& =\kappa_{a}^{\prime} \sigma_{z}^{(b)}\left|\phi_{\left\{\kappa_{a}\right\}}\right\rangle_{C} \tag{13}
\end{align*}
$$

Cluster state for $\forall_{a} \kappa_{a}=1$, start in state $|\psi\rangle_{C}=\bigotimes_{a}|+\rangle_{a}$, where $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. We then apply $S_{a b}$ to all neighbors a, b.

$$
\begin{align*}
S_{a b} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \tag{14}\\
& =\frac{1}{2}\left(I+\sigma_{z}^{(a)}+\sigma_{z}^{(b)}-\sigma_{z}^{(a)} \otimes \sigma_{z}^{(b)}\right) \tag{15}
\end{align*}
$$

Here are a few examples of gates that can be made using wiring diagrams:

Transmission Line

$$
\begin{aligned}
& \begin{array}{llllll}
\sigma_{x} & \sigma_{x} & \sigma_{x} & \sigma_{x} \\
\text { Hadamard } & & \\
\underline{\sigma_{x}} & \sigma_{y} & \sigma_{y} & \sigma_{y} & \sigma_{x} & \sigma_{x} \\
\text { Rotation } & & & \\
\sigma_{x} & \sigma_{x} & \pm & \sigma_{x} & \sigma_{x}
\end{array}
\end{aligned}
$$

Figure 5: CNOT Gate, Transmission Line, Hadamard, Rotation

$$
\frac{|\psi\rangle|+\rangle|+\rangle}{S_{a b}}
$$

Figure 6: Transmission line

We also know that $S_{a b}$ commutes with $S_{a^{\prime} b^{\prime}}$. In the $|0\rangle,|1\rangle$ basis, $S_{a b}$ can be represented by a diagonal matrix, which means that they have to commute. $K^{(a)} \otimes_{a, b} S_{a b}|+\rangle^{\otimes n}$ is an eigenvector of $K^{(a)}$.

Demonstration of a transmission line effect:

$$
\begin{align*}
S_{a b}|+\rangle|+\rangle & =S_{a b} \frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle) \tag{16}\\
& =\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle) \tag{17}\\
& =\frac{1}{\sqrt{2}}(|+\rangle|0\rangle+|-\rangle|1\rangle) \tag{18}
\end{align*}
$$

With this, we apply $S_{a b}$ and measure both a and b in the $|+\rangle,|-\rangle$ basis. This is equivalent to measuring in the $\langle++| S_{a b},\langle+-| S_{a b},\langle-+| S_{a b},\langle--| S_{a b}$ basis, which is also equivalent to measuring in the $\frac{1}{\sqrt{2}}(\langle 0+|+\langle 1-|)$ basis. In this way we get the teleportation effect on the original $|\psi\rangle$.

