18.435 Lecture 13

October $16^{\text {th }}, 2003$
Scribed by: Eric Fellheimer
This lectured started with details about the homework 3:
Typo in Nielsen and Chuang: If you pick random x such that $\operatorname{gcd}(\mathrm{x}, \mathrm{N})=1, \mathrm{x}<\mathrm{N}$ and N is the product of m distinct primes raised to positive integral powers, and r is the order of $\mathrm{x} \bmod \mathrm{N}$, then the probability that r is even and $x^{r / 2} \neq-1 \bmod N \geq 1-\frac{1}{2^{m-1}}$. The book erroneously has the power of 2 as m opposed to $\mathrm{m}-1$.

In exercise 5.20 : The book states at the bottom of the problem that a certain sum has value $\sqrt{\frac{N}{R}}$ when 1 is a multiple of N / r. The answer should actually be N / r when 1 is a multiple of N / r.

Also, there will be a test on Thursday, October $23^{\text {rd }}$
-Open books
-Open notes
-in class
-covers through Grover's algorithm, teleportation, and superdense coding

From last lecture:
We know that quantum circuits can simulate Quantum Turing Machines (QTM) with polynomial overhead.

Now we will look in the reverse direction: implementing a Turing machine to simulate a quantum circuit.

We will need to show that we can approximate any gate with a finite set of gates.
Thm: CNOT gates and one-qubit gates are universal for quantum computation

Proof:
We already know gates of the form $\left[\begin{array}{llll}\alpha & \beta & & \\ \gamma & \delta & & \\ & & 1 & \\ & & & 1\end{array}\right]\left[\begin{array}{llll}\alpha & & \beta & \\ & 1 & & \\ \gamma & & \delta & \\ & & & 1\end{array}\right]\left[\begin{array}{llll}\alpha & & & \beta \\ & 1 & & \\ & & 1 & \\ \gamma & & & \delta\end{array}\right]$ are sufficient, where $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$ is a unitary matrix.

We know use the fact that:

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & & 1 \\
& & 1 &
\end{array}\right]\left[\begin{array}{llll}
\alpha & & \beta & \\
& 1 & & \\
\gamma & & \delta & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & & 1
\end{array}\right]=\left[\begin{array}{llll}
\alpha & & & \beta \\
& 1 & & \\
& & & 1
\end{array}\right]
$$

This reduces the proof to only finding the first 2 of the 3 matrices above. The first 2 , however, can be considered single-qubit operations. So if we can construct arbitrary single qubit operations, our proof is complete. We now look at forming controlled T^{2} gates with
$\mathrm{T}=\left[\begin{array}{ll}e^{i \Phi_{1}} & \\ & e^{-i \Phi_{1}}\end{array}\right]$ or $\mathrm{T}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
We now know:

$$
\left[\begin{array}{ll}
e^{i \Phi_{1}} & \\
& e^{-i \Phi_{1}}
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{ll}
e^{i \Phi_{2}} & \\
& e^{-i \Phi 2}
\end{array}\right]
$$

give arbitrary determinant 1 , unitary 2 X 2 matrices. Thus, our proof is complete.

We know suppose Alice and Bob share stat (1/2) (|0000>+|0101>+|1011>+|1110>) where Alice owns the first 2 qubits.
They can use this state to teleport Alice's 2 qubits to Bob. To do this, Alice must send Bob 4 classical bits.

Quantum linear optics as a means for computation

- suppose you have a probabilistic method of applying CNOT gates and you know when it has worked
- you can measure in the Bell basis
- you can de single qubit operations

We argue that this strange set of requirements actually allows universal computation
We want
$\sigma_{1}^{\prime} \otimes \sigma_{2}^{\prime} \quad$ CNOT $\quad \sigma_{1}^{-1} \otimes \sigma_{1}^{-2}|a, b\rangle=C N O T|a, b\rangle$
We now want to know that for each a,b \{X, Y, Z, I\} there exists a', b' such that $\sigma_{a^{\prime}} \otimes \sigma_{b^{\prime}} \quad$ CNOT $\quad \sigma_{a} \otimes \sigma_{b}=C N O T$

Knowing that the Pauli matrices are self inverses, we get:
$\sigma_{a^{\prime}} \otimes \sigma_{b^{\prime}}=$ CNOT $\quad \sigma_{a} \otimes \sigma_{b} \quad$ CNOT
CNOT $\sigma_{x}(1)$ CNOT $=\sigma_{x}(1) \otimes \sigma_{x}(2)$
CNOT $\sigma_{x}(2)$ CNOT $=\sigma_{x}(2)$
CNOT $\sigma_{z}(1)$ CNOT $=\sigma_{z}(1)$
Thus, we have:
CNOT $\sigma_{y}(1)$ CNOT $=-i$ CNOT $_{z}(1) \sigma_{x}(1)$ CNOT
CNOT $\sigma_{y}(1)$ CNOT $=-i$ CNOT $_{z}(1)$ CNOT CNOT $\sigma_{x}(1)$ CNOT
CNOT $\sigma_{y}(1)$ CNOT $=-i \sigma_{z}(1) \sigma_{x}(1) \sigma_{x}(2)$
CNOT $\sigma_{y}(1)$ CNOT $=\sigma_{y}(1) \sigma_{x}(2)$
We have shown that we can teleport through controlled not gates to use quantum linear optics as a means of quantum computation.

Adiabatic Quantum Computation

Physical systems have Hamiltonians H such that $\langle\Psi| H|\Psi\rangle=\mathrm{E}$ is the energy of the system.

H is a Hermitian operator.
The wave function satisfies the Schrödinger Equation:
$i \hbar \frac{d|\Psi\rangle}{d t}=H|\Psi\rangle$
Thm: If you change the Hamiltonian sufficiently slowly, and start in the ground state, you remain in the ground state.

Here, "sufficiently slow" means T is proportional to $1 /|\mathrm{g}|^{\wedge} 2$, where g is the gap between first and second energy eigenvalues.

If we start in state $\mathrm{H}_{\text {init }}$ and end in $\mathrm{H}_{\text {final }}, \mathrm{H}_{\text {init }} / \mathrm{H}_{\text {final }}$ are sums of Hamiltonians involving no more than a few qubits.

Finally, there is a theorem which states that using this setup can be equated to using quantum circuits.

