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In this lecture we will cover the basics of Quantum Mechanics which are required to under
stand the process of quantum computation. To simplify the discussion we assume that all the 
Hilbert spaces mentioned below are finitedimensional. The process of quantum computation can 
be abstracted via the following four postulates. 

Postulate 1. Associated to any isolated physical system is a complex vector space with inner product 
(that is, a Hilbert space) known as the state space of the system. The state of the system is 
completely described by a unit vector in this space. 

Qubits were the example of such system that we saw in the previous lecture. In its physical 
realization as a polarization of a photon we have two basis vectors: |�� and |↔� representing the 
vertical and the horizontal polarizations respectively. In this basis vector polarized at angle θ can 
be expressed as cos θ |↔� − sin θ |��. 

An important property of a quantum system is that multiplying a quantum state by a unit 
iθcomplex factor (eiθ ) yields the same complex state. Therefore e |�� and |�� represent essentially 

the same state. 

Notation 1. State χ is denoted by χ� (often called a ket) is a column vector, e.g., | ⎛ ⎞
1/2 ⎝ i
√

3/2 ⎠ 

0 

χ�† = (often called a bra) denotes a conjugate transpose of χ�. In the previous example we | �χ|
would get (1/2, −i

√
3/2, 0). It is easy to verify that �χ χ� = 1 and

|
�x| |y� ≤ 1. 

Postulate 2. Evolution of a closed quantum system is described by a unitary transformation. If 
ψ� is the state at time t, and ψ�� is the state at time t�, then ψ�� = U ψ� for some unitary operator | | | |
U which depends only on t and t�. 

Definition 1. A unitary operator is a linear operator that takes unit vectors to unit vectors. 

For every ψ, �ψ U †U ψ� = 1 and therefore U †U = I. Here by A† we denote the adjoint operator | |
of A, that is, the operator that satisfies (�x A†)† = A x� for every x.| |

Definition 2. A Hermitian operator is an operator that satisfies A† = A. 
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Commonly used operators on qubits are Pauli matrices I, σx, σy , σz and Hadamard transform 
H described as follows. 

1 0�+σx = 
0 

Maps: |0� → |1� ; 0� ; | √
2

|1� �
1 0 

|1� → |

σy =
0 −i 

Maps: |0� → i |1� ;
i 0 

|1� → −i |0� 

1 0 
σz = 0� −1 

Maps: |0� → |0� ; |1� → − |1� 

1 1 
Maps: |0� → |0�+√

2

|1� ; |1� → |0�−|1�√
2 

H = √1
2 1 −1 

Postulate 2 stems from Srödinger equation for physical systems, namely 

d
i� 

|ψ� 
= H |ψ�

dt 

where H is a fixed Hermitian operator known as the Hamiltonian of a closed system. 

Postulate 3. Quantum measurements are described by a collection {Mm} of measurement opera
tors. These are operators acting on a state space of the system being measured. The index m refers 
to the measurement outcomes that may occur in the experiment. If the state of the quantum system 
is ψ� immediately before the measurement then the probability that result m occurs is given by |

p(m) = �ψ Mm
†Mm ψ� ,| |

and the state of the system after the measurement is 

Mm� 
|ψ� 

. 
�ψ|Mm

†Mm |ψ� 

The measurement operators satisfy the completeness equation, 

Mm
†Mm = I . 

m 

The completeness equation expresses the fact that probabilities sum to one: 

1 = p(m) = �ψ|Mm
†Mm ψ� .|

m m 

We will mostly see the following types of measurements. Suppose v1� , v2� , . . . , vd� form an | |
orthonormal basis. Then {Mi = |vi� �vi|} is a quantum measurement. From state 

|
ψ� in this |

measurement we will obtain 

vi|vi� � |ψ� 
with probability |�vi . 

vi|� |ψ�| 
|ψ�| 2 

Definition 3. A projector is a Hermitian matrix with eigenvalues 0 and 1. The subspace with 
eigenvalue 1 is the subspace associated with this operator. 
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Suppose S1, S2, . . . , Sk are orthogonal subspaces that span the state space. Then {Pi} is a 
quantum measurement where Pi is the projector onto Si. We can write 

= α1 ψ1�+ α2 + αk ψk � ,|ψ� | |ψ2�+ · · · |

where Then this measurement takes ψ� to ψi� with probability .|ψi� ∈ Si. | | |αi| 2 

Postulate 4. The state space of a composite quantum system is the tensor product of the state spaces 
of the component physical systems. Moreover, if we have systems numbered 1 through n, and system 
number i is prepared in the state ψi�, then the joint state of the total system is ψn�.| |ψ1�⊗|ψ2�⊗· · ·⊗|

Definition 4. Let S1 and S2 be Hilbert spaces with bases e1� , . . . , ek � and f1� , . . . , fl� respectively. | | | |
Then a tensor product of S1 and S2 denoted S1 ⊗ S2 is a kldimensional space consisting of all the 
linear combinations of all the possible pairs of original bases elements, that is, of {|ei�⊗ fj �}i≤k,j≤l|

w� is often contracted to w� or vw�).(|v� ⊗ | |v� | |

In a more concrete matrix representation the tensor product of two vectors is the Kronecker 
product of vectors. For example, ⎛
 ⎞
3 

5
√

2 ⎜⎜⎜⎝


⎟⎟⎟⎠


1 4 
5
√

2 
−3 
5
√

2 

3√
2 = 1 4√
2 

⊗ 5 
− 5 

−4 
5
√

2 

The tensor product satisfies the property that the product of two unit vectors is a unit vector. This 
is to verify as follows. Let v1� = ai ei� and v2� = bj fj � be two unit vectors. Then | | | |

v2� = ai bj fj � = aibj ei� fj � .|v1� ⊗ | |ei� ⊗ | | |

Therefore, 
2 2 22 = |aibj | 2 = |bj | 2 =||v1� ⊗ |v2�| |ai| ||v1�| ||v2�| 

Another important property of the tensor product space is that it contains vectors which are not 
tensor product themselves. For example, it can be easily verified that the vector 

1 
( e1� e2� f1�)√

2 
| |f2� − | |

is not a tensor product itself. Such vectors are called “entangled”. 


