Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation

QUIZ 1 SOLUTION

Problem 1. In NMR quantum computing, a Hadamard gate is implemented by rotating around the axis $(\vec{x}+\vec{z}) / \sqrt{2}$. Compute the matrix obtained by rotation around this axis by π radians, and compare to a Hadamard gate.

Solution:

If we denote the rotation by angle θ about $(\vec{x}+\vec{z}) / \sqrt{2}$ by $R(\theta)$, we have

$$
\begin{aligned}
& R(\theta)=\exp \left[-i(\theta / 2)\left(\sigma_{X}+\sigma_{Z}\right) / \sqrt{2}\right\} \\
&=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2}\left(\sigma_{X}+\sigma_{Z}\right) / \sqrt{2} \\
& \Rightarrow \\
& R(\pi)=-i\left(\sigma_{X}+\sigma_{Z}\right) / \sqrt{2} \\
&=\frac{-i}{\sqrt{2}}\left(\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right) \\
&=\frac{-i}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
&=-i H
\end{aligned}
$$

where H is the Hadamard gate.
Problem 2. Let

$$
H=\frac{1}{2}\left(\sigma_{X} \otimes \sigma_{X}+\sigma_{Y} \otimes \sigma_{Y}+\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right)
$$

be an operator on two qubits.
a) Find H^{2} and write it in a simple form.
b) Using (a), find $\exp (-i \pi H / 4)$ and $\exp (-i \pi H / 2)$.
c) Find the eigenvalues of H.
d) Find a set of orthonormal eigenstates of H.

Solution:

a) We have

$$
H^{2}=\frac{1}{2}\left(\sigma_{X} \otimes \sigma_{X}+\sigma_{Y} \otimes \sigma_{Y}+\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right) H
$$

Note that

$$
\begin{aligned}
\frac{1}{2}\left(\sigma_{X} \otimes \sigma_{X}\right) H & =\frac{1}{4}\left(\sigma_{X} \otimes \sigma_{X}\right)\left(\sigma_{X} \otimes \sigma_{X}+\sigma_{Y} \otimes \sigma_{Y}+\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right) \\
& =\frac{1}{4}\left(\sigma_{X} \sigma_{X} \otimes \sigma_{X} \sigma_{X}+\sigma_{X} \sigma_{Y} \otimes \sigma_{X} \sigma_{Y}+\sigma_{X} \sigma_{Z} \otimes \sigma_{X} \sigma_{Z}+\sigma_{X} \otimes \sigma_{X}\right) \\
& =\frac{1}{4}\left(I \otimes I+i \sigma_{Z} \otimes i \sigma_{Z}+(-i) \sigma_{Y} \otimes(-i) \sigma_{Y}+\sigma_{X} \otimes \sigma_{X}\right) \\
& =\frac{1}{4}\left(I \otimes I-\sigma_{Z} \otimes \sigma_{Z}-\sigma_{Y} \otimes \sigma_{Y}+\sigma_{X} \otimes \sigma_{X}\right)
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
\frac{1}{2}\left(\sigma_{Y} \otimes \sigma_{Y}\right) H=\frac{1}{4}\left(-\sigma_{X} \otimes \sigma_{X}+\sigma_{Y} \otimes \sigma_{Y}-\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right) \\
\frac{1}{2}\left(\sigma_{Z} \otimes \sigma_{Z}\right) H=\frac{1}{4}\left(-\sigma_{X} \otimes \sigma_{X}-\sigma_{Y} \otimes \sigma_{Y}+\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right) \\
\frac{1}{2}(I \otimes I) H=\frac{H}{2}
\end{gathered}
$$

Adding up these four relations, one can obtain

$$
H^{2}=I \otimes I
$$

b) Using equation (4.7) of N\&C, we have

$$
\exp (i \theta H)=\cos (\theta) I \otimes I+i \sin (\theta) H
$$

\Rightarrow

$$
\exp (-i \pi H / 4)=\sqrt{2} I \otimes I / 2-i \sqrt{2} H / 2
$$

and

$$
\exp (-i \pi H / 2)=-i H
$$

c) Using Problem 1(b) in Problem Set 2, it can be seen that the only possible values for the eigenvalues are +1 and -1 .
d) You can easily verify that the Bell states, described in the first problem of Problem Set 3, are one possible set of eigenstates. (In fact, $H=\mathrm{I}_{A B}^{2}-I \otimes I$.) The first state in that problem, the singlet sate, has eigenvalue -1 and the other three have eigenvalues +1 .

Problem 3. Let N be an integer larger than 5. Consider the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x \bmod N\rangle_{A} \otimes|3 x \bmod N\rangle_{B} \otimes|5 x \bmod N\rangle_{C} .
$$

Find the output state if we take a quantum Fourier transform modulus N on each of the registers A, B, and C. That is, if we denote the corresponding QFT operators to each system by U_{A}, U_{B}, and U_{C}, find $U_{A} \otimes U_{B} \otimes U_{C}|\psi\rangle$. Write your answer in the basis $\{|0\rangle,|1\rangle, \ldots,|N-1\rangle\}^{\otimes 3}$, and show that it is the superposition of equally probable states. What is this probability?

Solution:

$$
\begin{aligned}
U_{A} \otimes U_{B} \otimes U_{C}|\psi\rangle & =\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} U_{A}|x \bmod N\rangle_{A} \otimes U_{B}|3 x \bmod N\rangle_{B} \otimes U_{C}|5 x \bmod N\rangle_{C} \\
& =\left(\frac{1}{\sqrt{N}}\right)^{4} \sum_{x=0}^{N-1} \sum_{k=0}^{N-1} e^{2 \pi i x k}|k\rangle_{A} \otimes \sum_{m=0}^{N-1} e^{2 \pi i(3 x) m}|m\rangle_{B} \otimes \sum_{n=0}^{N-1} e^{2 \pi i(5 x) n}|n\rangle_{C} \\
& =\frac{1}{N^{2}} \sum_{x=0}^{N-1} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{2 \pi i(k+3 m+5 n) x}|k\rangle_{A}|m\rangle_{B}|n\rangle_{C} \\
& =\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1}|k\rangle_{A}|m\rangle_{B}|n\rangle_{C} \sum_{x=0}^{N-1} e^{2 \pi i(k+3 m+5 n) x} \\
& =\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1}|k\rangle_{A}|m\rangle_{B}|n\rangle_{C} N \delta_{k,-3 m-5 n \bmod N} \\
& =\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1}|-3 m-5 n \bmod N\rangle_{A}|m\rangle_{B}|n\rangle_{C} .
\end{aligned}
$$

This is the superposition of N^{2} states each with probability of occurrence $1 / N^{2}$.

