Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation

QUIZ 1

Problem 1. In NMR quantum computing, a Hadamard gate is implemented by rotating around the axis $(\vec{x}+\vec{z}) / \sqrt{2}$. Compute the matrix obtained by rotation around this axis by π radians, and compare to a Hadamard gate.

Problem 2. Let

$$
H=\frac{1}{2}\left(\sigma_{X} \otimes \sigma_{X}+\sigma_{Y} \otimes \sigma_{Y}+\sigma_{Z} \otimes \sigma_{Z}+I \otimes I\right)
$$

be an operator on two qubits.
a) Find H^{2} and write it in a simple form.
b) Using (a), find $\exp (-i \pi H / 4)$ and $\exp (-i \pi H / 2)$.
c) Find the eigenvalues of H.
d) Find a set of orthonormal eigenstates of H.

Problem 3. Let N be an integer larger than 5. Consider the following state:

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x \bmod N\rangle_{A} \otimes|3 x \bmod N\rangle_{B} \otimes|5 x \bmod N\rangle_{C}
$$

Find the output state if we take a quantum Fourier transform modulus N on each of the registers A, B, and C. That is, if we denote the corresponding QFT operators to each system by U_{A}, U_{B}, and U_{C}, find $U_{A} \otimes U_{B} \otimes U_{C}|\psi\rangle$. Write your answer in the basis $\left\{|i\rangle_{A}|j\rangle_{B}|k\rangle_{C} \mid 0 \leq i, j, k<N\right\}$, and show that it is the superposition of equally probable states. What is this probability?

