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18.413: ErrorCorrecting Codes Lab March 2, 2004 

Lecture 8 

Lecturer: Daniel A. Spielman 

8.1 Vector Spaces 

A n is a vector space if for all x ∈ C and y ∈ C, x + y ∈ C, where we take addition set C ∈ {0, 1}
to be componentwise modulo 2. We note that over 0, 1, we do not need to state the property that 
cx ∈ C for all c ∈ {0, 1}, as it is obvious. Note that the all0 vector is always in C, as it equals x+x. 

Given vector x1, . . . , xk, we define 

span (x1, . . . , xk) = {a1x1 + + akxk : a1, . . . , ak ∈ {0, 1}} .· · ·

We say that x1, . . . , xk span C if C = span (x1, . . . , xk). 

The following definition is fundamental. 

Definition 8.1.1. The vectors x1, . . . , xk are a basis for C if they span C and no proper subset of 
these vectors spans C. 

Lemma 8.1.2. The vectors x1, . . . , xk are a basis for C if and only if they span C and for each i, 

xi �∈ span (x1, . . . , xi−1, xi+1, . . . , xk) . 

Proof. If some subset of x1, . . . , xk spans C, then there exists i such that x1, . . . , xi−1, xi+1, . . . , xk 

spans C. As xi ∈ C for all i, we then have 

xi ∈ span (x1, . . . , xi−1, xi+1, . . . , xk) . 

On the other hand, if 
xi ∈ span (x1, . . . , xi−1, xi+1, . . . , xk) , 

then we will show that x1, . . . , xi−1, xi+1, . . . , xk span C. To see this, let xi = j=� i bjxj . We will 
now show that every vector in span (x1, . . . , xk) can be expressed without using xi. Let 

x = ajxj . 
j 

If ai = 0, then x ∈ span (x1, . . . , xi−1, xi+1, . . . , xk). If ai = 1, then 

x = xi + ajxj = bjxj + ajxj = (aj + bj)xj , 
j=i j=i j=i j=i 

and so x ∈ span (x1, . . . , xi−1, xi+1, . . . , xk). 
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Lemma 8.1.3. Every vector space C ∈ {0, 1} n has a basis. 

Proof. We first note that C spans C. Now, if we have a set S of vectors that spans C, but which is 
not a basis, then we can find a proper subset of S that spans C. If we replace S by this propert 
subset, and repeat, we will eventually find a basis. The process cannot go on forever because 
initially S is finite and at each step is gets smaller. 

Lemma 8.1.4. Let {x1, . . . , xk} be a basis for C. Then, for (a1, . . . , ak) ∈ {0, 1} k and (b1, . . . , bk) ∈ 
{0, 1} k, if there exists a j for which aj = bj, then 

aixi = bixi. 
i i 

Proof. We may assume without loss of generality that aj = 0 and bj = 1. Assume by way of 
contradiction that � � 

aixi = bixi. 
i i 

Then, � 
(ai + bi)xi = xj , 

i=j 

so 
xj ∈ span (x1, . . . , xj−1, xj+1, . . . , xk) , 

contradicting the assumption that x1, . . . , xk is a basis. 

Lemma 8.1.5. If x1, . . . , xk is a basis of C, then |C = 2k .|

Proof. There are 2k vectors of the form � 
aixi, 

and by the previous lemma they are all distinct. 

Corollary 8.1.6. Each basis of a vector space has the same number of elements. 

If C has a basis of k vectors, then we say that C has dimension k. 

8.2 Dual 

Definition 8.2.1. If C is a vector space in {0, 1} n, then the dual of C is 
Tn : ∀x ∈ C, y x = 0 .D = y ∈ {0, 1} 

This is where we will see a difference between vector spaces over the reals and {0, 1}: we can have 
vectors in both C and dual (C). For example, consider 

C = {0000, 0011, 1100, 1111} . 

In this case, we have dual (C) = .C
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Proposition 8.2.2. The dual of a vector space is a vector space. 

Proposition 8.2.3. If x1, . . . , xk is a basis of C and D = dual (C), then 
T Tn : y x1 = 0, . . . , y xk = 0 .D = y ∈ {0, 1} 

The remainder of this section is devoted to the proof of: 

Lemma 8.2.4. Let C be a vector space and let D = dual (C). Let C have dimension k and D have 
dimension j. Then, k + j = n. Moreover, dual (D) = .C

We first prove that bases can be extended: 
nLemma 8.2.5. Let x1, . . . , xk be the basis of C ⊆ {0, 1} . Then, there exist vector xk+1, . . . , xn 

nsuch that x1, . . . , xn is a basis of {0, 1} . 

Proof. It suffices to show that if k < n, then there is a vector xk+1 such that x1, . . . , xk+1 is a 
nbasis. We may obtain such a vector by choosing any xk+1 ∈ {0, 1} −C, which must be nonempty 

because |C = 2k < 2n . To prove that x1, . . . , xk+1 is a basis, we first note that it spans a vector |
space strictly larger than C, so it’s span must have dimension k + 1. It then follows that no proper 
subset of these vectors can span this space, as any proper subset would have at most k vectors. 

Proposition 8.2.6. The dual of {0, 1} n is �0 . 

Lemma 8.2.7. If y1, y2 ∈ {0, 1} n are distinct, and x1, . . . , xn is a basis of {0, 1} n, then there exists 
an i such that 

T T xi y1 = xi y2. 

Proof. Assume by way of contradiction that this does not hold. Let y = y1 − y2. As these are 
distinct, y is nonzero. But, we have 

T T T T xi y = xi (y1 − y2) = xi y1 − xi y2 = 0, 

for all i. Thus, y ∈ dual (span (x1, . . . , xn)), which contradicts Propositions 8.2.6 and 8.2.3. 

nLemma 8.2.8. Let x1, . . . , xn be a basis of {0, 1} . Then, there exists another basis y1, . . . , yn of 
{0, 1} n such that � 

1 if i = jT xi yj = (8.1)
0 otherwise. 

Proof. For any y ∈ {0, 1} n, let 
T Tf(y) = (x1 y, . . . , x n y). 

By Lemma 8.2.7, for y1 =� y2, f(y1) = f(y2). As there are 2n possible values for y and 2n possible 
values for f(y), for each possible z ∈ {0, 1} n, there must be some y for which f(y) = z. Thus, there 
must exist y1, . . . , yn that satisfy (8.1). 

To show that these span {0, 1} n, we will show that the only vector in their dual is �0. To see this, 
Tconsider any x =� 0, express x = aixi. As some ai must be nonzero, we have yi x = 1 for that i 

i. 
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We can now prove the lemma that we set out to prove. 

proof of Lemma 8.2.4. Let x1, . . . , xk be a basis of C. By Lemma 8.2.5, there exist xk+1, . . . , xn 
nfor which x1, . . . , xn is a basis of {0, 1} . Let y1, . . . , yn be the inverse basis shown to exist in 

Lemma 8.2.8. We claim that yk+1, . . . , yn is a basis for dual (C). From (8.1), it is clear that each of 
these vectors is in dual (C). To show that they span dual (C), let z ∈ dual (C). Express 

z = biyi. 
i 

If bi is 1 for some i ≤ k, then we will have 

T T xi z = xi yi = 1, 

contradicting the assumption that z ∈ dual (C). Thus, each vector in dual (C) is spanned by 
yk+1, . . . , yn. 

8.3 Codes and Matrices 

Let C be a linear code over {0, 1}. Then, C can be expressed either as the output of a generator 
matrix: � � 

wG : ,C = w ∈ {0, 1} k 

where G is a kbyn matrix whose rows form a basis of C, or as those words satisfying a check 
matrix � � 

C = x : Hx = �0 , 

where H is a n− kbyn matrix whose rows form a basis of the dual space of C. 

It turns out that particular matrices are more useful that others. For example, consider the case 
in which G has the form 

G = [IkP ] , 

where Ik is the kbyk identity matrix. In this case, the first k bits of wG are w. Thus, the message 
that we are encoding appears in the codeword. An encoding matrix that has this property is 
called systematic, and this property is particularly useful if we are trying to estimate the wis from 
corrupted versions of x. In general, any encoding matrix whose columns can be permuted into this 
special form is called systematic. One can prove: 

Lemma 8.3.1. If G is a matrix whose rows are a basis, then there is a systematic matrix G� such 
that 

{wG} = wG� . 

Sketch. One can obtain G� from Gaussian elimination. You begin by finding some column that has 
a 1 in the first row. You then add this row to every other row that has a 1 in that column. After 
you do this, that will be the only row with a 1 in that column. You then move on to do the same 
for the next row, etc. 
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Lemma 8.3.2. If the span of the rows of G is C, and G has the form 

G = [IkP ] , 

then the span of the rows of � � 
H = P T In−k , 

is dual (C). 


