March 2, 2004

Lecture 8

Lecturer: Daniel A. Spielman

8.1 Vector Spaces

A set $C \in \{0,1\}^n$ is a vector space if for all $x \in C$ and $y \in C$, $x + y \in C$, where we take addition to be component-wise modulo 2. We note that over 0, 1, we do not need to state the property that $cx \in C$ for all $c \in \{0,1\}$, as it is obvious. Note that the all-0 vector is always in C, as it equals x + x.

Given vector x_1, \ldots, x_k , we define

span
$$(x_1, \ldots, x_k) = \{a_1x_1 + \cdots + a_kx_k : a_1, \ldots, a_k \in \{0, 1\}\}.$$

We say that x_1, \ldots, x_k span \mathcal{C} if $\mathcal{C} = \text{span}(x_1, \ldots, x_k)$.

The following definition is fundamental.

Definition 8.1.1. The vectors x_1, \ldots, x_k are a basis for C if they span C and no proper subset of these vectors spans C.

Lemma 8.1.2. The vectors x_1, \ldots, x_k are a basis for C if and only if they span C and for each i,

 $x_i \notin \operatorname{span}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k).$

Proof. If some subset of x_1, \ldots, x_k spans C, then there exists i such that $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k$ spans C. As $x_i \in C$ for all i, we then have

$$x_i \in \operatorname{span}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_k)$$

On the other hand, if

$$x_i \in \operatorname{span}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_k),$$

then we will show that $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k$ span \mathcal{C} . To see this, let $x_i = \sum_{j \neq i} b_j x_j$. We will now show that every vector in span (x_1, \ldots, x_k) can be expressed without using x_i . Let

$$x = \sum_{j} a_j x_j$$

If $a_i = 0$, then $x \in \text{span}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k)$. If $a_i = 1$, then

$$x = x_i + \sum_{j \neq i} a_j x_j = \sum_{j \neq i} b_j x_j + \sum_{j \neq i} a_j x_j = \sum_{j \neq i} (a_j + b_j) x_j,$$

and so $x \in \text{span}(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$.

Lemma 8.1.3. Every vector space $C \in \{0,1\}^n$ has a basis.

Proof. We first note that C spans C. Now, if we have a set S of vectors that spans C, but which is not a basis, then we can find a proper subset of S that spans C. If we replace S by this propert subset, and repeat, we will eventually find a basis. The process cannot go on forever because initially S is finite and at each step is gets smaller.

Lemma 8.1.4. Let $\{x_1, \ldots, x_k\}$ be a basis for C. Then, for $(a_1, \ldots, a_k) \in \{0, 1\}^k$ and $(b_1, \ldots, b_k) \in \{0, 1\}^k$, if there exists a j for which $a_j \neq b_j$, then

$$\sum_{i} a_i x_i \neq \sum_{i} b_i x_i.$$

Proof. We may assume without loss of generality that $a_j = 0$ and $b_j = 1$. Assume by way of contradiction that

$$\sum_{i} a_i x_i = \sum_{i} b_i x_i.$$

Then,

$$\sum_{i \neq j} (a_i + b_i) x_i = x_j,$$

 \mathbf{SO}

$$x_j \in \operatorname{span}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_k),$$

contradicting the assumption that x_1, \ldots, x_k is a basis.

Lemma 8.1.5. If x_1, \ldots, x_k is a basis of C, then $|C| = 2^k$.

Proof. There are 2^k vectors of the form

$$\sum a_i x_i,$$

and by the previous lemma they are all distinct.

Corollary 8.1.6. Each basis of a vector space has the same number of elements.

If C has a basis of k vectors, then we say that C has dimension k.

8.2 Dual

Definition 8.2.1. If C is a vector space in $\{0,1\}^n$, then the dual of C is

$$\mathcal{D} = \left\{ y \in \{0, 1\}^n : \forall x \in \mathcal{C}, y^T x = 0 \right\}.$$

This is where we will see a difference between vector spaces over the reals and $\{0, 1\}$: we can have vectors in both C and dual (C). For example, consider

$$\mathcal{C} = \{0000, 0011, 1100, 1111\}.$$

In this case, we have dual $(\mathcal{C}) = \mathcal{C}$.

Proposition 8.2.2. The dual of a vector space is a vector space.

Proposition 8.2.3. If x_1, \ldots, x_k is a basis of C and D = dual(C), then

$$\mathcal{D} = \left\{ y \in \{0, 1\}^n : y^T x_1 = 0, \dots, y^T x_k = 0 \right\}.$$

The remainder of this section is devoted to the proof of:

Lemma 8.2.4. Let C be a vector space and let D = dual(C). Let C have dimension k and D have dimension j. Then, k + j = n. Moreover, dual(D) = C.

We first prove that bases can be extended:

Lemma 8.2.5. Let x_1, \ldots, x_k be the basis of $\mathcal{C} \subseteq \{0,1\}^n$. Then, there exist vector x_{k+1}, \ldots, x_n such that x_1, \ldots, x_n is a basis of $\{0,1\}^n$.

Proof. It suffices to show that if k < n, then there is a vector x_{k+1} such that x_1, \ldots, x_{k+1} is a basis. We may obtain such a vector by choosing any $x_{k+1} \in \{0,1\}^n - C$, which must be non-empty because $|\mathcal{C}| = 2^k < 2^n$. To prove that x_1, \ldots, x_{k+1} is a basis, we first note that it spans a vector space strictly larger than \mathcal{C} , so it's span must have dimension k+1. It then follows that no proper subset of these vectors can span this space, as any proper subset would have at most k vectors. \Box

Proposition 8.2.6. The dual of $\{0,1\}^n$ is $\{\vec{0}\}$.

Lemma 8.2.7. If $y_1, y_2 \in \{0, 1\}^n$ are distinct, and x_1, \ldots, x_n is a basis of $\{0, 1\}^n$, then there exists an *i* such that

$$x_i^T y_1 \neq x_i^T y_2.$$

Proof. Assume by way of contradiction that this does not hold. Let $y = y_1 - y_2$. As these are distinct, y is non-zero. But, we have

$$x_i^T y = x_i^T (y_1 - y_2) = x_i^T y_1 - x_i^T y_2 = 0$$

for all *i*. Thus, $y \in \text{dual}(\text{span}(x_1, \ldots, x_n))$, which contradicts Propositions 8.2.6 and 8.2.3.

Lemma 8.2.8. Let x_1, \ldots, x_n be a basis of $\{0, 1\}^n$. Then, there exists another basis y_1, \ldots, y_n of $\{0, 1\}^n$ such that

$$x_i^T y_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$
(8.1)

Proof. For any $y \in \{0,1\}^n$, let

$$f(y) = (x_1^T y, \dots, x_n^T y).$$

By Lemma 8.2.7, for $y_1 \neq y_2$, $f(y_1) \neq f(y_2)$. As there are 2^n possible values for y and 2^n possible values for f(y), for each possible $z \in \{0, 1\}^n$, there must be some y for which f(y) = z. Thus, there must exist y_1, \ldots, y_n that satisfy (8.1).

To show that these span $\{0,1\}^n$, we will show that the only vector in their dual is $\vec{0}$. To see this, consider any $x \neq 0$, express $x = \sum_i a_i x_i$. As some a_i must be non-zero, we have $y_i^T x = 1$ for that *i*.

We can now prove the lemma that we set out to prove.

proof of Lemma 8.2.4. Let x_1, \ldots, x_k be a basis of C. By Lemma 8.2.5, there exist x_{k+1}, \ldots, x_n for which x_1, \ldots, x_n is a basis of $\{0, 1\}^n$. Let y_1, \ldots, y_n be the inverse basis shown to exist in Lemma 8.2.8. We claim that y_{k+1}, \ldots, y_n is a basis for dual (C). From (8.1), it is clear that each of these vectors is in dual (C). To show that they span dual (C), let $z \in$ dual (C). Express

$$z = \sum_{i} b_i y_i.$$

If b_i is 1 for some $i \leq k$, then we will have

$$x_i^T z = x_i^T y_i = 1,$$

contradicting the assumption that $z \in dual(\mathcal{C})$. Thus, each vector in dual(\mathcal{C}) is spanned by y_{k+1}, \ldots, y_n .

8.3 Codes and Matrices

Let C be a linear code over $\{0,1\}$. Then, C can be expressed either as the output of a generator matrix:

$$\mathcal{C} = \left\{ wG : w \in \{0,1\}^k \right\},\$$

where G is a k-by-n matrix whose rows form a basis of C, or as those words satisfying a check matrix

$$\mathcal{C} = \left\{ x : Hx = \vec{0} \right\}$$

where H is a n - k-by-n matrix whose rows form a basis of the dual space of C.

It turns out that particular matrices are more useful that others. For example, consider the case in which G has the form

$$G = \left[I_k P \right],$$

where I_k is the k-by-k identity matrix. In this case, the first k bits of wG are w. Thus, the message that we are encoding appears in the codeword. An encoding matrix that has this property is called *systematic*, and this property is particularly useful if we are trying to estimate the w_i s from corrupted versions of x. In general, any encoding matrix whose columns can be permuted into this special form is called *systematic*. One can prove:

Lemma 8.3.1. If G is a matrix whose rows are a basis, then there is a systematic matrix G' such that

$$\{wG\} = \{wG'\}.$$

Sketch. One can obtain G' from Gaussian elimination. You begin by finding some column that has a 1 in the first row. You then add this row to every other row that has a 1 in that column. After you do this, that will be the only row with a 1 in that column. You then move on to do the same for the next row, etc.

Lemma 8.3.2. If the span of the rows of G is C, and G has the form

$$G = \left[I_k P \right],$$

then the span of the rows of

$$H = \left[P^T I_{n-k}\right],$$

is dual (\mathcal{C}) .