18.413: Error-Correcting Codes Lab

Lecture 8

Lecturer: Daniel A. Spielman

8.1 Vector Spaces

A set $\mathcal{C} \in\{0,1\}^{n}$ is a vector space if for all $x \in \mathcal{C}$ and $y \in \mathcal{C}, x+y \in \mathcal{C}$, where we take addition to be component-wise modulo 2 . We note that over 0,1 , we do not need to state the property that $c x \in \mathcal{C}$ for all $c \in\{0,1\}$, as it is obvious. Note that the all- 0 vector is always in \mathcal{C}, as it equals $x+x$.

Given vector x_{1}, \ldots, x_{k}, we define

$$
\operatorname{span}\left(x_{1}, \ldots, x_{k}\right)=\left\{a_{1} x_{1}+\cdots+a_{k} x_{k}: a_{1}, \ldots, a_{k} \in\{0,1\}\right\} .
$$

We say that x_{1}, \ldots, x_{k} span \mathcal{C} if $\mathcal{C}=\operatorname{span}\left(x_{1}, \ldots, x_{k}\right)$.
The following definition is fundamental.
Definition 8.1.1. The vectors x_{1}, \ldots, x_{k} are a basis for \mathcal{C} if they span \mathcal{C} and no proper subset of these vectors spans \mathcal{C}.

Lemma 8.1.2. The vectors x_{1}, \ldots, x_{k} are a basis for \mathcal{C} if and only if they span \mathcal{C} and for each i,

$$
x_{i} \notin \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) .
$$

Proof. If some subset of x_{1}, \ldots, x_{k} spans \mathcal{C}, then there exists i such that $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}$ spans \mathcal{C}. As $x_{i} \in \mathcal{C}$ for all i, we then have

$$
x_{i} \in \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) .
$$

On the other hand, if

$$
x_{i} \in \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right),
$$

then we will show that $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}$ span \mathcal{C}. To see this, let $x_{i}=\sum_{j \neq i} b_{j} x_{j}$. We will now show that every vector in $\operatorname{span}\left(x_{1}, \ldots, x_{k}\right)$ can be expressed without using x_{i}. Let

$$
x=\sum_{j} a_{j} x_{j} .
$$

If $a_{i}=0$, then $x \in \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$. If $a_{i}=1$, then

$$
x=x_{i}+\sum_{j \neq i} a_{j} x_{j}=\sum_{j \neq i} b_{j} x_{j}+\sum_{j \neq i} a_{j} x_{j}=\sum_{j \neq i}\left(a_{j}+b_{j}\right) x_{j},
$$

and so $x \in \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$.

Lemma 8.1.3. Every vector space $\mathcal{C} \in\{0,1\}^{n}$ has a basis.

Proof. We first note that \mathcal{C} spans \mathcal{C}. Now, if we have a set S of vectors that spans \mathcal{C}, but which is not a basis, then we can find a proper subset of S that spans \mathcal{C}. If we replace S by this propert subset, and repeat, we will eventually find a basis. The process cannot go on forever because initially S is finite and at each step is gets smaller.
Lemma 8.1.4. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for \mathcal{C}. Then, for $\left(a_{1}, \ldots, a_{k}\right) \in\{0,1\}^{k}$ and $\left(b_{1}, \ldots, b_{k}\right) \in$ $\{0,1\}^{k}$, if there exists a j for which $a_{j} \neq b_{j}$, then

$$
\sum_{i} a_{i} x_{i} \neq \sum_{i} b_{i} x_{i}
$$

Proof. We may assume without loss of generality that $a_{j}=0$ and $b_{j}=1$. Assume by way of contradiction that

$$
\sum_{i} a_{i} x_{i}=\sum_{i} b_{i} x_{i}
$$

Then,

$$
\sum_{i \neq j}\left(a_{i}+b_{i}\right) x_{i}=x_{j}
$$

so

$$
x_{j} \in \operatorname{span}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}\right)
$$

contradicting the assumption that x_{1}, \ldots, x_{k} is a basis.
Lemma 8.1.5. If x_{1}, \ldots, x_{k} is a basis of \mathcal{C}, then $|\mathcal{C}|=2^{k}$.

Proof. There are 2^{k} vectors of the form

$$
\sum a_{i} x_{i}
$$

and by the previous lemma they are all distinct.
Corollary 8.1.6. Each basis of a vector space has the same number of elements.
If \mathcal{C} has a basis of k vectors, then we say that \mathcal{C} has dimension k.

8.2 Dual

Definition 8.2.1. If \mathcal{C} is a vector space in $\{0,1\}^{n}$, then the dual of \mathcal{C} is

$$
\mathcal{D}=\left\{y \in\{0,1\}^{n}: \forall x \in \mathcal{C}, y^{T} x=0\right\}
$$

This is where we will see a difference between vector spaces over the reals and $\{0,1\}$: we can have vectors in both \mathcal{C} and dual (\mathcal{C}). For example, consider

$$
\mathcal{C}=\{0000,0011,1100,1111\}
$$

In this case, we have dual $(\mathcal{C})=\mathcal{C}$.

Proposition 8.2.2. The dual of a vector space is a vector space.
Proposition 8.2.3. If x_{1}, \ldots, x_{k} is a basis of \mathcal{C} and $\mathcal{D}=\operatorname{dual}(\mathcal{C})$, then

$$
\mathcal{D}=\left\{y \in\{0,1\}^{n}: y^{T} x_{1}=0, \ldots, y^{T} x_{k}=0\right\}
$$

The remainder of this section is devoted to the proof of:
Lemma 8.2.4. Let \mathcal{C} be a vector space and let $\mathcal{D}=\operatorname{dual}(\mathcal{C})$. Let \mathcal{C} have dimension k and \mathcal{D} have dimension j. Then, $k+j=n$. Moreover, dual $(\mathcal{D})=\mathcal{C}$.

We first prove that bases can be extended:
Lemma 8.2.5. Let x_{1}, \ldots, x_{k} be the basis of $\mathcal{C} \subseteq\{0,1\}^{n}$. Then, there exist vector x_{k+1}, \ldots, x_{n} such that x_{1}, \ldots, x_{n} is a basis of $\{0,1\}^{n}$.

Proof. It suffices to show that if $k<n$, then there is a vector x_{k+1} such that x_{1}, \ldots, x_{k+1} is a basis. We may obtain such a vector by choosing any $x_{k+1} \in\{0,1\}^{n}-\mathcal{C}$, which must be non-empty because $|\mathcal{C}|=2^{k}<2^{n}$. To prove that x_{1}, \ldots, x_{k+1} is a basis, we first note that it spans a vector space strictly larger than \mathcal{C}, so it's span must have dimension $k+1$. It then follows that no proper subset of these vectors can span this space, as any proper subset would have at most k vectors.

Proposition 8.2.6. The dual of $\{0,1\}^{n}$ is $\{\overrightarrow{0}\}$.
Lemma 8.2.7. If $y_{1}, y_{2} \in\{0,1\}^{n}$ are distinct, and x_{1}, \ldots, x_{n} is a basis of $\{0,1\}^{n}$, then there exists an i such that

$$
x_{i}^{T} y_{1} \neq x_{i}^{T} y_{2}
$$

Proof. Assume by way of contradiction that this does not hold. Let $y=y_{1}-y_{2}$. As these are distinct, y is non-zero. But, we have

$$
x_{i}^{T} y=x_{i}^{T}\left(y_{1}-y_{2}\right)=x_{i}^{T} y_{1}-x_{i}^{T} y_{2}=0
$$

for all i. Thus, $y \in \operatorname{dual}\left(\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)\right)$, which contradicts Propositions 8.2.6 and 8.2.3.
Lemma 8.2.8. Let x_{1}, \ldots, x_{n} be a basis of $\{0,1\}^{n}$. Then, there exists another basis y_{1}, \ldots, y_{n} of $\{0,1\}^{n}$ such that

$$
x_{i}^{T} y_{j}= \begin{cases}1 & \text { if } i=j \tag{8.1}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. For any $y \in\{0,1\}^{n}$, let

$$
f(y)=\left(x_{1}^{T} y, \ldots, x_{n}^{T} y\right)
$$

By Lemma 8.2.7, for $y_{1} \neq y_{2}, f\left(y_{1}\right) \neq f\left(y_{2}\right)$. As there are 2^{n} possible values for y and 2^{n} possible values for $f(y)$, for each possible $z \in\{0,1\}^{n}$, there must be some y for which $f(y)=z$. Thus, there must exist y_{1}, \ldots, y_{n} that satisfy (8.1).

To show that these span $\{0,1\}^{n}$, we will show that the only vector in their dual is $\overrightarrow{0}$. To see this, consider any $x \neq 0$, express $x=\sum_{i} a_{i} x_{i}$. As some a_{i} must be non-zero, we have $y_{i}^{T} x=1$ for that i.

We can now prove the lemma that we set out to prove.
proof of Lemma 8.2.4. Let x_{1}, \ldots, x_{k} be a basis of \mathcal{C}. By Lemma 8.2.5, there exist x_{k+1}, \ldots, x_{n} for which x_{1}, \ldots, x_{n} is a basis of $\{0,1\}^{n}$. Let y_{1}, \ldots, y_{n} be the inverse basis shown to exist in Lemma 8.2.8. We claim that y_{k+1}, \ldots, y_{n} is a basis for dual (\mathcal{C}). From (8.1), it is clear that each of these vectors is in dual (\mathcal{C}). To show that they span dual (\mathcal{C}), let $z \in \operatorname{dual}(\mathcal{C})$. Express

$$
z=\sum_{i} b_{i} y_{i} .
$$

If b_{i} is 1 for some $i \leq k$, then we will have

$$
x_{i}^{T} z=x_{i}^{T} y_{i}=1,
$$

contradicting the assumption that $z \in \operatorname{dual}(\mathcal{C})$. Thus, each vector in dual (\mathcal{C}) is spanned by y_{k+1}, \ldots, y_{n}.

8.3 Codes and Matrices

Let \mathcal{C} be a linear code over $\{0,1\}$. Then, \mathcal{C} can be expressed either as the output of a generator matrix:

$$
\mathcal{C}=\left\{w G: w \in\{0,1\}^{k}\right\}
$$

where G is a k-by-n matrix whose rows form a basis of \mathcal{C}, or as those words satisfying a check matrix

$$
\mathcal{C}=\{x: H x=\overrightarrow{0}\},
$$

where H is a $n-k$-by- n matrix whose rows form a basis of the dual space of \mathcal{C}.
It turns out that particular matrices are more useful that others. For example, consider the case in which G has the form

$$
G=\left[I_{k} P\right],
$$

where I_{k} is the k-by- k identity matrix. In this case, the first k bits of $w G$ are w. Thus, the message that we are encoding appears in the codeword. An encoding matrix that has this property is called systematic, and this property is particularly useful if we are trying to estimate the w_{i} s from corrupted versions of x. In general, any encoding matrix whose columns can be permuted into this special form is called systematic. One can prove:

Lemma 8.3.1. If G is a matrix whose rows are a basis, then there is a systematic matrix G^{\prime} such that

$$
\{w G\}=\left\{w G^{\prime}\right\}
$$

Sketch. One can obtain G^{\prime} from Gaussian elimination. You begin by finding some column that has a 1 in the first row. You then add this row to every other row that has a 1 in that column. After you do this, that will be the only row with a 1 in that column. You then move on to do the same for the next row, etc.

Lemma 8.3.2. If the span of the rows of G is \mathcal{C}, and G has the form

$$
G=\left[I_{k} P\right],
$$

then the span of the rows of

$$
H=\left[P^{T} I_{n-k}\right],
$$

is dual (\mathcal{C}).

