Lecture 6

Lecturer: Daniel A. Spielman

6.1 Introduction

Begin by describing LDPC codes, and how they are described by many local constraints. Point out that random graphs locally look like trees (from the birthday paradox), and so we will learn to do belief propagation on trees. But first, we must learn to do BP on the simplest of trees: with just 2 and three nodes.

6.2 Two variables

We begin with a further examination of our fundamental formula in the case of just two variables. Let X_{1} be a variable taking values in the alphabet A_{1} and let X_{2} be a variable taking values in the alphabet A_{2}. Then let $\mathcal{C} \in A_{1} \times A_{2}$ be a code.

Assume that we choose $\left(X_{1}, X_{2}\right) \in \mathcal{C}$ uniformly at random, transmit over a channel, and receive $\left(Y_{1}, Y_{2}\right)$.

We will show

Lemma 6.2.1.

$$
P^{\text {post }}\left[X_{1}=a_{1} \mid Y_{1} Y_{2}=b_{1} b_{2}\right]=c_{b_{1}, b_{2}} P^{\text {prior }}\left[X_{1}=a_{1}\right] P^{e x t}\left[X_{1}=a_{1} \mid Y_{1}=b_{1}\right] P^{e x t}\left[X_{1}=a_{1} \mid Y_{2}=b_{2}\right],
$$

where

$$
P^{\text {prior }}\left[X_{1}=a_{1}\right]=\frac{\left|\left\{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}\right\}\right|}{|\mathcal{C}|}
$$

As we already know that

$$
\mathrm{P}^{\text {post }}\left[X_{1}=a_{1} \mid Y_{1} Y_{2}=b_{1} b_{2}\right]=c_{b_{1}, b_{2}} \mathrm{P}^{\text {prior }}\left[X_{1}=a_{1}\right] \mathrm{P}^{\text {ext }}\left[X_{1}=a_{1} \mid Y_{1} Y_{2}=b_{1} b_{2}\right],
$$

so it suffices to prove

Lemma 6.2.2.

$$
P^{e x t}\left[X_{1}=a_{1} \mid Y_{1} Y_{2}=b_{1} b_{2}\right]=c_{b_{1}, b_{2}} P^{e x t}\left[X_{1}=a_{1} \mid Y_{1}=b_{1}\right] P^{e x t}\left[X_{1}=a_{1} \mid Y_{2}=b_{2}\right] .
$$

Proof. We begin by examining the right-hand-sides. We have

$$
\begin{equation*}
\mathrm{P}^{e x t}\left[X_{1}=a_{1} \mid Y_{1}=b_{1}\right]=c_{b_{1}} \mathrm{P}\left[Y_{1}=b_{1} \mid X_{1}=a_{1}\right] \tag{6.1}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{P}^{e x t}\left[X_{1}=a_{1} \mid Y_{2}=b_{2}\right] & =c_{b_{2}} \mathrm{P}\left[Y_{2}=b_{2} \mid X_{1}=a_{1}\right] \\
& =c_{b_{2}} \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} \mathrm{P}\left[Y_{2}=b_{2} \mid X_{1} X_{2}=a_{1} a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \\
& =c_{b_{2}} \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \tag{6.2}
\end{align*}
$$

Now, we examine the left-hand-side:

$$
\begin{aligned}
\mathrm{P}^{e x t}\left[X_{1}=a_{1} \mid Y_{1} Y_{2}=b_{1} b_{2}\right] & =c_{b_{1}, b_{2}} \mathrm{P}\left[Y_{1} Y_{2}=b_{1} b_{2} \mid X_{1}=a_{1}\right] \\
& =c_{b_{1}, b_{2}} \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} \mathrm{P}\left[Y_{1} Y_{2}=b_{1} b_{2} \mid X_{1} X_{2}=a_{1} a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \\
& =c_{b_{1}, b_{2}} \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} \mathrm{P}\left[Y_{1}=b_{1} \mid X_{1}=a_{1}\right] \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \\
& =c_{b_{1}, b_{2}} \mathrm{P}\left[Y_{1}=b_{1} \mid X_{1}=a_{1}\right] \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right]
\end{aligned}
$$

To conclude, we observe that this last term is the product of (6.1) and (6.2).

6.3 Simplifying computations

6.4 Three Variables

We now consider the situation in which X_{1}, X_{2} and X_{3} lie in A_{1}, A_{2} and A_{3}, and $\left(X_{1}, X_{2}\right) \in \mathcal{C}_{12} \subseteq$ $A_{1} \times A_{2}$ and and $\left(X_{2}, X_{3}\right) \in \mathcal{C}_{23} \subseteq A_{2} \times A_{3}$. In particular, we will assume that $\left(X_{1}, X_{2}, X_{3}\right)$ are chosen uniformly subject to this condition.

The variables $\left(X_{1}, X_{2}, X_{3}\right)$ then satisfy what the book calls the "Markov" property. That is, for all a_{1}, a_{2}, a_{3},

$$
\mathrm{P}\left[X_{1} X_{3}=a_{1} a_{3} \mid X_{2}=a_{2}\right]=\mathrm{P}\left[X_{1}=a_{1} \mid X_{2}=a_{2}\right] \mathrm{P}\left[X_{3}=a_{3} \mid X_{2}=a_{2}\right]
$$

In this case, we can say that all the information that X_{3} contains about X_{1} is transmitted through X_{2}. This fact can be used to simplify the belief computation.

Lemma 6.4.1.

$$
P^{e x t}\left[X_{1}=a_{1} \mid Y_{2} Y_{3}=b_{2} b_{3}\right]=\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}} P\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] P^{e x t}\left[X_{2}=a_{2} \mid Y_{2}=b_{2}\right] P^{e x t}\left[X_{2}=a_{2} \mid Y_{3}=b_{3}\right]
$$

That is, the computation of $\mathrm{P}^{e x t}\left[X_{1}=a_{1} \mid Y_{2} Y_{3}=b_{2} b_{3}\right]$ can be done in two stages: in the first we compute $\mathrm{P}^{e x t}\left[X_{2}=a_{2} \mid Y_{3}=b_{3}\right]$ for each a_{2}, and in the second we sum over the $a_{2} \mathrm{~s}$.

Proof of Lemma 6.4.1. We have

$$
\begin{aligned}
& \mathrm{P}^{e x t}\left[X_{1}=a_{1} \mid Y_{2} Y_{3}=b_{2} b_{3}\right] \\
& \sim \mathrm{P}\left[Y_{2} Y_{3}=b_{2} b_{3} \mid X_{1}=a_{1}\right] \\
& =\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \mathrm{P}\left[Y_{2} Y_{3}=b_{2} b_{3} \mid X_{1} X_{2}=a_{1} a_{2}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \\
& =\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \sum_{a_{3}:\left(a_{2}, a_{3}\right) \in \mathcal{C}_{23}} \mathrm{P}\left[Y_{2} Y_{3}=b_{2} b_{3} \mid X_{1} X_{2} X_{3}=a_{1} a_{2} a_{3}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \mathrm{P}\left[X_{3}=a_{3} \mid X_{1} X_{2}=a_{1} a_{2}\right] \\
& =\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \sum_{a_{3}:\left(a_{2}, a_{3}\right) \in \mathcal{C}_{23}} \mathrm{P}\left[Y_{2} Y_{3}=b_{2} b_{3} \mid X_{2} X_{3}=a_{2} a_{3}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \mathrm{P}\left[X_{3}=a_{3} \mid X_{2}=a_{2}\right] \\
& =\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \sum_{a_{3}:\left(a_{2}, a_{3}\right) \in \mathcal{C}_{23}} \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \mathrm{P}\left[Y_{3}=b_{3} \mid X_{3}=a_{3}\right] \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \mathrm{P}\left[X_{3}=a_{3} \mid X_{2}=a_{2}\right] \\
& =\sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \sum_{a_{3}:\left(a_{2}, a_{3}\right) \in \mathcal{C}_{23}} \mathrm{P}\left[Y_{3}=b_{3} \mid X_{3}=a_{3}\right] \mathrm{P}\left[X_{3}=a_{3} \mid X_{2}=a_{2}\right] \\
& \sim \sum_{a_{2}:\left(a_{1}, a_{2}\right) \in \mathcal{C}_{12}} \mathrm{P}\left[X_{2}=a_{2} \mid X_{1}=a_{1}\right] \mathrm{P}\left[Y_{2}=b_{2} \mid X_{2}=a_{2}\right] \mathrm{P}^{e x t}\left[X_{2}=a_{2} \mid Y_{3}=b_{3}\right]
\end{aligned}
$$

6.5 Trees

A hypergraph is given by a collection of vertices x_{1}, \ldots, x_{n} and a collection of edges e_{1}, \ldots, e_{m}, where each $e_{i} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. A path in a hypergraph is a sequence of vertices $x_{i_{1}}, \ldots, x_{i_{k}}$ such that each consecutive pair in the sequence lie in some edge. That is, for each $2 \leq j \leq k$, there exists l such that $\left\{x_{i_{j-1}}, x_{i_{j}}\right\} \subseteq e_{l}$. A hypergraph is connected if for each pair of vertices there is at least one path connecting them.

A hypergraph is a tree if for each pair of vertices there is exactly one path connecting them. An equivalent definition is that for each i, if one replaces each edge e_{l} containing x_{i} by $e_{l}^{\prime}=e_{l}-\left\{x_{i}\right\}$, then the hypergraph is disconnected.

If we have variables X_{1}, \ldots, X_{n} chosen uniformly subject to constraints, each of which involves only the variables in an edge, and the corresponding hypergraph is a tree, then Lemma 6.4.1 can be extended to an algorithm for belief computation in the tree.

