Lecture 3

Lecturer: Daniel A. Spielman

3.1 Analysis of repetition code meta-channel

When we specialize our interpretation of the output of a channel to the meta channel formed by encoding using the repitition code and transmitting over another channel, we solve a fundamental problem of probability: how to combine the results of independent experiments.

That is, let w be a random varible taking values in $\{0,1\}$. Imagine encoding w using the repeat2 -times code to $\left(x_{1}, x_{2}\right)=(w, w)$, and transmitting x_{1} and x_{2} over a memoryless channel (so each transmission is independent). Equivalently, we could assume that x_{1} is transmitted over one channel and x_{2} is transmitted over another. Let y_{1} and y_{2} be the random variables corresponding to the outputs of the channel, let b_{1} and b_{2} be the values actually received, and let

$$
\begin{aligned}
p_{1} & =\mathrm{P}\left[x_{1}=1 \mid y_{1}=b_{1}\right], \text { and } \\
p_{2} & =\mathrm{P}\left[x_{2}=1 \mid y_{2}=b_{2}\right] .
\end{aligned}
$$

We would like to know the probability that $w=1$ given both y_{1} and y_{2}. As before, we will assume that w was uniformly distributed (half chance 0 and half chance 1). I think of each channel transmission as an experiment, and I now want to determine the probability that w was 1 given the results of both experiments.

By the theorem from last class, we have

$$
\begin{equation*}
\mathrm{P}\left[w=1 \mid y_{1}=b_{1} \text { and } y_{2}=b_{2}\right]=\frac{\mathrm{P}\left[y_{1}=b_{1} \text { and } y_{2}=b_{2} \mid w=1\right]}{\mathrm{P}\left[y_{1}=b_{1} \text { and } y_{2}=b_{2} \mid w=1\right]+\mathrm{P}\left[y_{1}=b_{1} \text { and } y_{2}=b_{2} \mid w=0\right]} \tag{3.1}
\end{equation*}
$$

To evaluate this probability, we first note that

$$
\mathrm{P}\left[y_{1}=b_{1} \mid w=1\right]=\mathrm{P}\left[w=1 \mid y_{1}=b_{1}\right] \mathrm{P}\left[y_{1}=b_{1}\right] / \mathrm{P}[w=1]=p_{1} \mathrm{P}\left[y_{1}=b_{1}\right] / \mathrm{P}[w=1] .
$$

While we do not necessarily know $\mathrm{P}\left[y_{1}=b_{1}\right]$, it will turn out not to matter.
Since the two channel outputs are independent given w, we have

$$
\begin{aligned}
\mathrm{P}\left[y_{1}=b_{1} \text { and } y_{2}=b_{2} \mid w=1\right] & =\mathrm{P}\left[y_{1}=b_{1} \mid w=1\right] \mathrm{P}\left[y_{2}=b_{2} \mid w=1\right] \\
& =\frac{p_{1} \mathrm{P}\left[y_{1}=b_{1}\right] p_{2} \mathrm{P}\left[y_{2}=b_{2}\right]}{\mathrm{P}[w=1] \mathrm{P}[w=1]} .
\end{aligned}
$$

Applying $\mathrm{P}\left[w=0 \mid y_{1}=b_{1}\right]=1-\mathrm{P}\left[w=1 \mid y_{1}=b_{1}\right]$, we can also comput

$$
\mathrm{P}\left[y_{1}=b_{1} \text { and } y_{2}=b_{2} \mid w=0\right] \frac{\left(1-p_{1}\right) \mathrm{P}\left[y_{1}=b_{1}\right]\left(1-p_{2}\right) \mathrm{P}\left[y_{2}=b_{2}\right]}{\mathrm{P}[w=0]^{2}} .
$$

Combining these equations, and $\mathrm{P}[w=0]=\mathrm{P}[w=1]=1 / 2$, we obtain

$$
(3.1)=\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)}
$$

In particular, the terms we don't know cancel!

3.2 Capacity of meta-channel

Consider the meta-channel obtained by encoding a bit w via the repeat-2-times code to obtain $\left(x_{1}, x_{2}\right)$, and then passing these bits through the $B S C_{p}$ to obtain (y_{1}, y_{2}). We will now compute the capacity of this meta-channel. We begin with the computation of the quantities that appear in the formula for $I\left(w ;\left(y_{1}, y_{2}\right)\right)$:

$$
\begin{aligned}
& \mathrm{P}\left[w=1 \mid\left(y_{1}, y_{2}\right)=(1,1)\right]=\frac{(1-p)^{2}}{p^{2}+(1-p)^{2}} \\
& \mathrm{P}\left[w=1 \mid\left(y_{1}, y_{2}\right)=(1,0)\right]=\frac{p(1-p)}{p(1-p)+(1-p) p}=1 / 2 \\
& \mathrm{P}\left[w=1 \mid\left(y_{1}, y_{2}\right)=(0,0)\right]=\frac{p^{2}}{\left.p^{2}+(1-p)^{2}\right)} \\
& \mathrm{P}\left[w=0 \mid\left(y_{1}, y_{2}\right)=(1,1)\right]=\frac{p^{2}}{\left.p^{2}+(1-p)^{2}\right)} \\
& \mathrm{P}\left[w=0 \mid\left(y_{1}, y_{2}\right)=(1,0)\right]=\frac{p(1-p)}{p(1-p)+(1-p) p}=1 / 2 \\
& \mathrm{P}\left[w=0 \mid\left(y_{1}, y_{2}\right)=(0,0)\right]=\frac{(1-p)^{2}}{p^{2}+(1-p)^{2}} .
\end{aligned}
$$

To compute the capacity, we must assume that $\mathrm{P}[w=1]=\mathrm{P}[w=0]=1 / 2$, so we have

$$
\begin{aligned}
& i\left(w=1 ;\left(y_{1}, y_{2}\right)=(1,1)\right)=\log _{2}\left(\frac{\mathrm{P}\left[w=1 \mid\left(y_{1}, y_{2}\right)=(1,1)\right]}{\mathrm{P}[w=1]}\right), \\
& \\
& =\log _{2}\left(\frac{2(1-p)^{2}}{(1-p)^{2}+p^{2}}\right), \\
& i\left(w=1 ;\left(y_{1}, y_{2}\right)=(1,0)\right)=0 \\
& i\left(w=1 ;\left(y_{1}, y_{2}\right)=(0,0)\right)=\log _{2}\left(\frac{2 p^{2}}{(1-p)^{2}+p^{2}}\right), \\
& i\left(w=0 ;\left(y_{1}, y_{2}\right)=(0,0)\right)=\log _{2}\left(\frac{2(1-p)^{2}}{(1-p)^{2}+p^{2}}\right), \\
& i\left(w=0 ;\left(y_{1}, y_{2}\right)=(1,0)\right)=0 \\
& i\left(w=0 ;\left(y_{1}, y_{2}\right)=(1,1)\right)=\log _{2}\left(\frac{2 p^{2}}{(1-p)^{2}+p^{2}}\right) .
\end{aligned}
$$

We now compute $I\left(w ; y_{1}, y_{2}\right)$ by summing over all events:

$$
\begin{aligned}
I\left(w ; y_{1}, y_{2}\right) & =\sum_{a, b_{1}, b_{2}} \mathrm{P}\left[w=a, y_{1}=b_{1}, y_{2}=b_{2}\right] i\left(w=a ; y_{1}=b_{1}, y_{2}=b_{2}\right) \\
& =\left((1-p)^{2}+p^{2}\right)\left(1-H\left(\frac{p^{2}}{(1-p)^{2}+p^{2}}\right)\right) .
\end{aligned}
$$

3.3 Prior, Extrinsic, Posterior and Intrinsic Probabilities

It is unsatisfying to have to keep assuming that w is uniformly distributed just because we don't know how it is distributed. There is a way to avoid having to make this assuption. In the situation in which a variable w is chosen, and then experiments are performed that reveal information about w, such as passing w through a channel, we call the initial probability of $w=1$ the prior probability of $w=1$, usually written

$$
\mathrm{P}^{\text {prior }}[w=1] .
$$

In general, when w can take one of many values a_{1}, \ldots, a_{m}, the prior distribution is the vector of prior probabilities

$$
\left(\mathrm{P}^{\text {prior }}\left[w=a_{1}\right], \mathrm{P}^{\text {prior }}\left[w=a_{2}\right], \ldots, \mathrm{P}^{\text {prior }}\left[w=a_{m}\right]\right) .
$$

Our experiments reveal the extrinsic probability of $w=1$ given the outcome of the experiment. For example, if y is the output of a channel on input w, and b is the value received, then

$$
\mathrm{P}^{e x t}[w=1 \mid y=b] \stackrel{\text { def }}{=} \frac{\mathrm{P}[y=b \mid w=1]}{\mathrm{P}[y=b \mid w=1]+\mathrm{P}[y=b \mid w=0]}
$$

is the extrinsic probability of $w=1$ given the event $y=b$. Up to now, we have really been computing extrinsic probabilities. For example, when we derived the interpretation of the output of a channel, we really derived the extrinsic probability.

If you know the prior probability, then you can combine this knowledge with the extrinsic probability to achieve the posterior probability: then actual probability of $w=1$ given the channel output. Treating the prior and extrinsic probabilities as independent observations, and applying the calculation of the previous section, we obtain

$$
\mathrm{P}^{\text {post }}[w=1 \mid y=b]=\frac{\mathrm{P}^{e x t}[w=1 \mid y=b] \mathrm{P}^{\text {prior }}[w=1]}{\mathrm{P}^{e x t}[w=1 \mid y=b] \mathrm{P}^{\text {prior }}[w=1]+\mathrm{P}^{e x t}[w=0 \mid y=b] \mathrm{P}^{\text {prior }}[w=0]}
$$

A useful exercise would be to re-derive the probability that $w=1$ given $y=b$ assuming that w is not uniformly distributed, and to observe that one obtains the above formula.

We will occasionally also see the term intrinsic probability. This will usually be treated in the same way as the prior, but will be distinguished from the prior in that it will often be determined from previous experiments.

