
18.413: Error-Correcting Codes Lab	 March 18, 2004


Lecture 13 
Lecturer: Daniel A. Spielman 

13.1 Related Reading 

•	 “Efficient Erasure Correcting Codes”, from Stellar web page. I’m not suggesting that you 
read this paper right now. But, this is where the material comes from. 

13.2 The Binary Erasure Channel 

The binary erasure channel can be understood to output three symbols: “0”, “1”, and “?”. The 
symbols 0 and 1 indicated that the input was a 0 or 1 respectively, and the symbol ? indicates 
that the input was equally likely to have been a 0 or 1. Thus, upon receiving these symbols, the 
demodulator tells us that the probability that the input symbol was a 1 is 0 or 1 if a 0 or 1 was 
received, or 1/2 if a ? was received. 

I claim that if one runs the belief propagation decoding algorithm for a LDPC code after trans
mitting over the erasure channel, then these three probabilities are the only quantities that will be 
transmitted over edges. To see this, let’s first consider the formula for parity nodes: 

int)1 − 



i

k 
=2(1 − 2p

iext p =	 .1 2 

We see that if pint = 1/2 for some i, then the product will equal zero, and we will get pext = 1/2.
i 1 

On the other hand, if pint = ±1 for all i, then each term in the product will be ±1, the product 
i 

will be ±1, and we will get pext � {0, 1}.1 

Similarly, for the equality nodes the update formula is: 



k int 
ext i=2 pi p = 




k	 int) 
.1 

int 


k+ 
i=2(1 − p

i=2 pi	 i 

Here, we see that if pint � {0, 1/2} for all i, and pint = 0 for some i, then we will get pext = 
i i 1 

0/(0 + 1) = 0. Similarly, if pint � {1, 1/2} for all i and pint = 1 for some i, then we get pext = 1. 
i i 1 

Finally, if pint = 1/2 for all i, then we get 
i 

2−(k−1) 
ext p =	 = 1/2.i 2−(k−1) + 2−(k−1) 

One might wonder if we can possibly have both a 0 and a 1 among the values of pint . If we did, 
i 

it would clearly be bad as we would then get pext = 0/(0 + 0) = undefined . However, if there are 1 

13-1




Lecture 13: March 18, 2004 13-2 

no numerical errors, then this should be impossible: a 0 is an indication that the bit is definitely 
0 and a 1 is an indication that the bit is definitely 1. By the correctness of the belief propagation 
algorithm on trees, it should be impossible for us to reach both conclusions simultaneously. (While 
the graph is not a tree, the output of the algorithm corresponds to the output for some tree). 

13.3 Analysis of LDPC on BEC 

The nice thing about using Low-Density Parity-Check codes on the BEC is that it is possible to 
analyze their performance. We’ll begin with heuristic approach to the analysis. Let p0 denote the 
probability of erasure in the channel. We are going to track the proportion of messages being sent at 
each iteration that correspond to probability 1/2. We let at denote the proportion of 1/2 messages 
leaving equality nodes during the tth iteration, and bt denote the proportion of 1/2 messages leaving 
parity nodes during the tth iteration. As we expect that p0 of the message bits will be erased, and 
in the first stage these are the only inputs to the equality nodes, we expect to have a1 = p0. 

The computation of the expected value of b1 will be more interesting. Note that a parity node 
will output 1/2 along an edge if any of its incoming messages on other edges were 1/2. As the 
graph is random, let’s assume that the probability that any of these incoming messages is 1/2 is 
a1. Then, the probability that a particular edge does not see a 1/2 is 1 − a0. As there are 5 
incomming messages, the probability that none of them are 1/2 is roughly (1 − a1)

5 . Similary the 
probabiility that some one of the incomming messages is a 1/2, and thus the outgoing message is 
a 1/2 is 1 − (1 − a1)

5 . Thus, we obtain 

b1 = 1 − (1 − a1)
5 . 

There was nothing special about this being the first stage. So, in general we obtain 

bi = 1 − (1 − ai)
5 . 

We now perform the analogous computation at the equality nodes. The value output by an equality 
node along an edge is a function of three inputs: the incomming messages on the other two edges 
and the value received by the channel. The output value will be a 1/2 only if all three of these are 
1/2. The probability the input from the channel is 1/2 is p0, and, assuming the graph is random, 
we expect the probability that each of the incomming messages is 1/2 to be bi. So, we get 

ai+1 = p0b
2 
i . 

13.3.1 Discussion 

The above computation is heuristically reasonable. However, the above justification does not 
really hold up. In particular, the repeated assertion “because the graph is random” needs some 
mathematics behind it. 

One might also wonder why we bother to do the computation in terms of the messages on edges 
rather than by fractions of nodes. The main reason is that you get the wrong answer this way. I 
would explain why, but I fear that the exercise of debunking a bad analysis would only serve to 
teach a bad analysis. If there is demand, I’ll explore why this would be wrong later. 



� 

Lecture 13: March 18, 2004 13-3 

13.4 Making the analysis rigorous on trees 

The equations derived in the previous section can be made rigorous in the case where the graph is 
a tree. While the graph is not a tree, we have reason to believe that the algorithm should behave 
similarly on infinite trees and graphs, so it is not so bad to go through trees. The computation 
that we get for a tree will be identical to that derived above, but the probabilities will have just 
slightly different meanings. 

Assuming that the trees have external edges at the leaves input to parity nodes, we understand a1 

to be the probability that a 1/2 is transmitted up an external edge, b1 to be the probability that a 
1/2 is transmitted up an edge above a tree containing just one parity node, ai to be the probability 
for a tree containing i levels of equality nodes, etc. 

+ 

a1 
b1 

b2 
+ 

= 

= 

= 

+ 

+ 

+ 

+ 

+ 

+ 

Figure 13.1: The probabilities on the tree 

In this case the analysis is exact as all of the probabilities considered really are independent. 

13.5 Using the polynomials 

Once we have these polynomial relations, we believe that we can correct all the erasures if bt goes to 
0 as t grows large. To check if it does, we can combine the two polynomial equations, and observe 
that 

at+1 = p0 1 − (1 − at)
5
�2 

. 

We can then do some derivations like: 

>> p0 = .4; 
>> a(1) = p0; 



13-4 Lecture 13: March 18, 2004


>> for i = 1:20, a(i+1)= p0 * (1-(1-a(i))^5)^2; end 
>> a 

a = 

Columns 1 through 4 

0.40000000000000 0.34021064704000 0.30622652487968 0.28175176205271 

Columns 5 through 8 

0.26169574373974 0.24375339697360 0.22659100186113 0.20925153584554 

Columns 9 through 12 

0.19090062329355 0.17069720280653 0.14774283981889 0.12116376063821 

Columns 13 through 16 

0.09053460661436 0.05709275330846 0.02594402938913 0.00606751131232 

Columns 17 through 20 

0.00035931960004 0.00000128925140 0.00000000001662 0.00000000000000 

Column 21 

0 

>> p0 = .44; 
>> a(1) = p0; 
>> for i = 1:20, a(i+1)= p0 * (1-(1-a(i))^5)^2; end 
>> a 

a = 

Columns 1 through 4 

0.44000000000000 0.39287014786402 0.37040180678629 0.35724986631803 

Columns 5 through 8 

0.34875815840488 0.34295307142171 0.33883631866955 0.33584307908024 

Columns 9 through 12 



� 

13-5 Lecture 13: March 18, 2004 

0.33362801453247 0.33196773069905 0.33071148036034 0.32975420756774


Columns 13 through 16


0.32902085739940 0.32845676540375 0.32802151644683 0.32768487882640


Columns 17 through 20


0.32742403093216 0.32722162169403 0.32706438559285 0.32694213647138


Column 21


0.32684702611889


So, we can tell that the limit of p0 that we can handle seems to be between .4 and .44. 

Of course, we would like to determine the threshold. There are two ways to go about doing this: 
algebraic and visual. I think it helps to work visually. We consider the function 

f(x) = p0 1 − (1 − x)5
�2 

, 

and plot it. Our iterated application of f(x) can be understood by reading off the point (p0, f(p0)) 
on the plot, then taking (f(p0), f(f(p0))), etc. 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05


0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Figure 13.2: Generated by code http://math.mit.edu/�spielman/ECC/lect13b.m 

A better way to visualize this is to place a mirror on the line x = y in the plot. We can then view 
the plot as bouncing around off this mirror and the curve. It is easy to show that this is equivalent 



13-6 Lecture 13: March 18, 2004


0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

Figure 13.3: Generated by code http://math.mit.edu/�spielman/ECC/lect13c.m 

to the previous process. We then generate a much nicer figure: In particular, we can tell from this 
figure that if the curve never crosses the mirror, then the decoding process should converge. 

We can still improve this further by dropping the mirror, plotting both polynomials, and bouncing 
between them: 

From this figure, we can tell that the code will converge as long as the curves don’t cross. Even 
better, given one curve, we can try to optimize our choice of the other curve, and vice versa. We 
may thereby obtain better and better codes. 

13.6 Capacity Estimation, revisited 

The big question is how to obtain such an analysis for other channels. One problem is that the 
distributions of messages being passed around cannot be so easily characterized by one variable. A 
characterization that we will sometimes try will be the capacity. 

In small project 1, we estimated the capacity by computing i(x; y) given that we sent x and received 
y, and then averaging over values. It turns out that we could have done this more simply. Recall 
that a symmetric channel can be described as a distribution over binary symmetric channels. That 
is, we have probabilities q1, . . . , qk , where qi is the probability of choosing channel i, which has a 
crossover probability of pi. A channel of crossover probability pi has capacity 

1 − H2(pi), 



� 

13-7 Lecture 13: March 18, 2004


1 

0.9 

0.8 

0.7 

0.6 

bi 0.5 

0.4 

0.3 

0.2 

0.1


0


bi = (1−(1−ai))5 

ai = p0 * bi2 

0	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
ai 

Figure 13.4: Generated by code http://math.mit.edu/�spielman/ECC/lect13d.m 

so the capacity of this symmetric channel is 

k 

1 − qiH2(pi). 
i=1 

What that means for us is that to estimate the capacity of a channel, we need merely take the 
probabilities p that pop out from it, and average the resulting values 1 − H2(p) (recall that H2(p) = 
−p log2(p) − (1 − p) log2(1 − p)). We don’t actually need to know whether the estimate is leaning 
towards correct or incorrect because H2(p) = H2(1 − p). 

I would like to revise project 1 by asking for you to treat the messages being sent at some iteration as 
a meta-channel, and empiracally computing its capacity in this way instead of keeping the statistics 
that I asked for. 


