
�

18.413: ErrorCorrecting Codes Lab March 16, 2004

Lecture 12

Lecturer: Daniel A. Spielman

12.1 Representing Probabilities, Equality nodes

It turns out that probabilities are not always the best way to represent the quantities we are
considering. To see why, I’ll begin with an examination of the computation at equality nodes. Say
that an equality node has incomming messages pint , for i = 1, . . . , k, and we want to compute i �k int

ext = i=2 pi p .1 �k int
�k

i=2(1 − pint)i=2 pi + i

It turns out that this computation is much easier if we use likelihood ratios:

int

lr int pi= i int
.

1− pi

The reason is that we have
k

lr ext = lr i
int .1

i=2

To see this, note that �kext int p1 = i=2 pi .ext �k
i=2(1 − pint)1− p1 i

intThis observation also makes it easier to compute pext for all i at once: first multiply all of the p si i

together, and then just divide out the appropriate terms as needed. However, I should warn you
that this solution is better in theory than in practice: in practice it is very easy to get zero divided
by zero this way.

Pushing things a little further, note that it is much easier to add than multiply. So, we could take
the logs of all these terms, and then just add them. This gives the loglikelihoodratios

llri = log(lri).

Loglikelihoodratios are nicer than likelihood ratios is that they treat probability values near 0 and
near 1 symmetrically: going to the other side just changes the sign in the llr. On the other hand,
the representation of numbers in floating point creates assymetry in likelihood ratios.

121

�

�

� � � �
 � �

Lecture 12: March 16, 2004 122

12.2 Representing Probabilities, Parity nodes

It seems like we should try to do something similar for parity nodes, and we can. Let’s look again
at the computation that we have to do at a parity node:

int)ext =
1−

�
i
k
=2(1 − 2pi p1 .

2

Rearranging terms, we can write this as

k k�
ext int int 2p1 − 1 = (1 − 2p) = (−1)k−1 (2p − 1).i i

i=2 i=2

This suggests introducing the “softbit”,

χi = 2pi − 1.

We then have
k

χext = (−1)k−1 χint
1 i .

i=2

We would again like to consider taking logs and adding. However, we can get into trouble this way
because the terms we are multiplying can be negative! To resolve this, we could separate out the
signs, and write

χext
1 =

k

(−1)k−1 = sign(χint
i

k

). log(χint
i).

i=2 i=2

12.3 tanh!?

If you really like loglikelihood ratios, then you might want to try to keep all of your computations
in terms of them. We first recall that

x

tanh(x/2) =
e − 1

.
ex + 1

So,
p

tanh(llri/2) = p
1−p − 1

= 2p− 1.
+ 11−p

So, we have
χi = − tanh(llri/2).

As tanh is an odd function, we can push the minus sign inside if we wish, to obtain

χi = tanh(−llri).

� �

�

Lecture 12: March 16, 2004 123

Plugging this into the formula derived in the previous section, we obtain

k k

− tanh(llr ext /2) = tanh(−llr ext /2) = (−1)k−1 (− tanh(llr int /2)) = (tanh(llr int /2)).1 1 i i

i=2 i=2

This implies, � �
k

llr ext = −2 tanh−1 (tanh(llr int /2)) .1 i

i=2

