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18.413: ErrorCorrecting Codes Lab March 16, 2004 

Lecture 12 

Lecturer: Daniel A. Spielman 

12.1 Representing Probabilities, Equality nodes 

It turns out that probabilities are not always the best way to represent the quantities we are 
considering. To see why, I’ll begin with an examination of the computation at equality nodes. Say 
that an equality node has incomming messages pint , for i = 1, . . . , k, and we want to compute i �k int 

ext = i=2 pi p .1 �k int 
�k

i=2(1 − pint )i=2 pi + i 

It turns out that this computation is much easier if we use likelihood ratios: 

int 

lr int pi= i int 
.

1− pi 

The reason is that we have 
k

lr ext = lr i
int .1 

i=2 

To see this, note that �kext int p1 = i=2 pi .ext �k
i=2(1 − pint )1− p1 i 

intThis observation also makes it easier to compute pext for all i at once: first multiply all of the p si i 

together, and then just divide out the appropriate terms as needed. However, I should warn you 
that this solution is better in theory than in practice: in practice it is very easy to get zero divided 
by zero this way. 

Pushing things a little further, note that it is much easier to add than multiply. So, we could take 
the logs of all these terms, and then just add them. This gives the loglikelihoodratios 

llri = log(lri). 

Loglikelihoodratios are nicer than likelihood ratios is that they treat probability values near 0 and 
near 1 symmetrically: going to the other side just changes the sign in the llr. On the other hand, 
the representation of numbers in floating point creates assymetry in likelihood ratios. 
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12.2 Representing Probabilities, Parity nodes 

It seems like we should try to do something similar for parity nodes, and we can. Let’s look again 
at the computation that we have to do at a parity node: 

int )ext =
1− 

�
i
k 
=2(1 − 2pi p1 .

2 

Rearranging terms, we can write this as 

k k� 
ext int int 2p1 − 1 = (1 − 2p ) = (−1)k−1 (2p − 1).i i 

i=2 i=2 

This suggests introducing the “softbit”, 

χi = 2pi − 1. 

We then have 
k

χext = (−1)k−1 χint 
1 i . 

i=2 

We would again like to consider taking logs and adding. However, we can get into trouble this way 
because the terms we are multiplying can be negative! To resolve this, we could separate out the 
signs, and write 

χext 
1 =


k

(−1)k−1 = sign(χint 
i 

k

). log( χint 
i ). 

i=2 i=2 

12.3 tanh!? 

If you really like loglikelihood ratios, then you might want to try to keep all of your computations 
in terms of them. We first recall that 

x 

tanh(x/2) = 
e − 1 

. 
ex + 1

So, 
p 

tanh(llri/2) = p 
1−p − 1 

= 2p− 1. 
+ 11−p 

So, we have 
χi = − tanh(llri/2). 

As tanh is an odd function, we can push the minus sign inside if we wish, to obtain 

χi = tanh(−llri). 
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Plugging this into the formula derived in the previous section, we obtain 

k k

− tanh(llr ext /2) = tanh(−llr ext /2) = (−1)k−1 (− tanh(llr int /2)) = (tanh(llr int /2)).1 1 i i 

i=2 i=2 

This implies, � � 
k

llr ext = −2 tanh−1 (tanh(llr int /2)) .1 i 

i=2 


