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18.409 An Algorithmist’s Toolkit September 29, 2009 

Lecture 6 
Lecturer: Jonathan Kelner Scribe: Anthony Kim(2009) 

Topics 

• Diameters and their relationship to λ2 

• Expanders 

• Butterfly networks 

Diameters and Eigenvalues 

So far, every time we’ve dealt with eigenvalues, it’s had something to do with connectivity. For example, 
the spectral gap can be used to approximate the quality of cuts; it also describes how well a graph can mix 
under a random walk. They both are saying similar things: the eigenvalue is saying how connected a graph 
is. A walk will mix quickly if there’s a lot connected to everything else. The min-cut will likewise be large 
if there’s a lot of connectivity. 

For almost every reasonable property about a graph, there’s something you can write down regarding its 
relation to the second eigenvalue of the Laplacian. Today, we’re going to show the relation between λ2 and 
the diameter of a graph. 

Definition 1 The diameter, δ, is the longest, shortest path between any two vertices of a graph. In other 
words, we can define the distance between two vertices u and v in G as the shortest path connecting the two. 
The diameter of G is the largest distance between any two vertices in G. 

It’s not immediately clear why the diameter should be related to λ2; the following provides intuition1: 

1. Well-connected graphs have big λ2 

2. Well-connected graphs have a small δ 

3. So, graphs with big λ2 should have small δ 

Before proceeding, we’ll be making the following assumption: 

Assumption 2 G is a d-regular graph (this is for simplicity and not really a limiting assumption). 

We’ll also be utilizing lazy random walks in our investigation. As a reminder, 

Definition 3 A lazy random walk is simply a random walk along a graph with self loops added in: 

A I 
M = + (1)

2d 2 ︸︷︷︸ ︸︷︷︸ 
Random Walk Self-loops 

where A is the graph’s adjacency matrix and I is the identity matrix. 

Since we’re using adjacency matrices, the interesting eigenvalues will be close to 1. So, let μ2 be the 
second largest eigenvalue of M and λ be the gap (i.e., λ = 1  − μ2). 

1Note, however, that this is not a proper syllogism 
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1.1 A First Bound 

Claim 4 For any G, 
ln(n)

δ ≤ (2)
λ 

where δ is the diameter of G, n is the number of vertices in the graph, and λ = 1  − μ2, where μ2 is the 
second largest eigenvalue of the M associated with G. 

Claim 4 means that λ, up to a logarithmic factor, really does provide a direct bound on the diameter of 
the graph. For most graphs, this isn’t very tight, but it’s a good place to start. So, why is it true? 
Proof We will use random walks to prove claim 4. Let u and v be vertices that are as far as possible from 
one another. Start a random walk at u and let pt(v) be the probability of a walk being at vertex v at time 
t. If  pt(v) > 0, then δ ≤ t. Intuitively, this means that if we start at u and, after t time steps, there is some 
probability of ending up at v (the farthest vertex from u), then there must be a path of length t between 
the two. If there wasn’t, pt(v) would be 0. 

Recalling that the stationary distribution is π(v) = 1/n for regular graphs, we can equivalently state that 
if |pt(v) − π(v)| < 1 , then δ ≤ t. Why? Because if |pt(v) − π(v)| < 1 , then pt(v) > 0, implying δ ≤ t. n n 

Recall from our earlier lecture on random walks that 

|pt(v) − π(v)| < (1 − λ)t 

min
d

y 

(v
d

)
(y) 

= (1  − λ)t 

Since G is regular, d(v) =  d for all vertices (allowing the last equality above). We’ll now look at what 
happens when we set t = ln 

λ
n : ( )ln n 

ln n 1 1 
λ(1 − λ)t = (1  − λ) < = 

e n 

With the inequality coming from the fact that (1 − λ)1/λ < 1 
e for all λ >  0. Thus, for t = ln 

λ
n , we have that 

|pt(v) − π(v)| < 1 , and therefore, δ ≤ t = ln n . n λ 

1.2 A better bound 

As stated earlier, bounding δ by n 
1 is not that great. So, can we do better? Yes. And we do so by using 

an important trick that frequently comes up. First, note that if the (u, v)th entry of Ak is non-zero, then 
there’s a path of at most length k from u to v. Replacing A with M doesn’t change this (it just makes the 
non-zero entries smaller). If eu and ev are basis vectors, then 

1 1 |pk(v) − π(v)| = |e T Mk − | <v eu 
n n 

which would imply δ ≤ k. Let’s then let p(x) be a polynomial of degree k: 

k 

p(x) =  cj x
j 

j=1 

Note that we can also interpret M as a variable and apply p to it as follows: 

k 

p(M) =  cj M
j 

j=1 

If p(M) has no zero entries, then δ ≤ k. Why? Because all non-zero elements of M indicate all vertices 
that can be reached in one step, M2 is all vertices that can be reached in two steps, and so on. Thus, 
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for any non-zero entry (u, v) in  p(M), there must have been a non-zero element in M j for 0 < j  ≤ k, 
implying the existence of a path from u to v of at most length k. If this is true for all entries in p(M), then 
a path of at most length k exists from any vertex to any other vertex, which means the diameter is at most k. 2 

Claim 5 Suppose p has degree k, p(1) = 1, and |p(μi)| < 1 for all i ≥ 2, then n 

δ ≤ k (3) 

Proof For this proof, it is sufficient to show that every entry in p(M) is non-zero. First, recall that we 
can write down any matrix, M , as the following: 

M = μivivi
T 

i 

where μi and vi are the i-th eigenvalue and eigenvector, respectively. Since 

Mk = μk
i vivi

T 

i 

we can write ⎞⎛ 
k k k 

p(M) =  cj M
j = cj μj 

i viv T 
i = ⎝ cj μ

j 
i 
⎠ viv T = T p(μi)vivi i 

j=0 j=0 i i j=0 i 

Therefore, we can write the (a, b)th entry of p(M) as follows 

e Ta p(M)eb = e Ta p(μi)vivi
T eb 

i 

= p(μi)(e Ta vi)(vi
T eb) 

i 

= p(μi)vi(a)vi(b) 
i 

n1 
+ p(μi)vi(a)vi(b)= 

n 
i=2 

n1 ≥ − 
n 

p(μi)vi(a)vi(b) 
i=2 
n1 |p(μi)| |vi(a)| |vi(b)|≥ − 

n 
i=2 

n 

≥ 
1 − max |p(μi)|
n i≥2 

|vi(a)| |vi(b)|
i=2 

≥ 
1 
n 
− max 

i≥2 
|p(μi)| 

> 0 

Where the penultimate step follows from |vi(a)| |vi(b)| ≤  1. Let V be the matrix where rows are the i 
eigenvectors vi’s. Then V ·V T = I by the orthonormal condition. It follows that V T ·V = I and the columns 

2Note that we’re not saying anything about δ if p(M) has zero entries. Since there are no restrictions on cj , it’s possible 
that the summation produces a zero entry for p(M) where for all positive cj a non-zero entry would have existed. 
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n n nof V form an orthonormal basis. Hence ( 
∑ |vi(a)||vi(b)|)2 ≤ 

(∑ |vi(a)|2 
) (∑ |vi(b)|2 

) ≤ 1. Thei=2 i=2 i=2

ultimate step follows from our assumption that |p(μi)| < 1 for all i ≥ 2. Thus, if p(1) = 1 and |p(μi)| < 1 
n n 

for all i ≥ 2, we have that every entry in p(M) is non-zero, implying that δ ≤ k. 

Claim 6 For any t ∈ (0, 1), I assert the existence of a magic polynomial, pk 
(t), with the following properties: 

1. p
(
k
t) is of degree k 

2. pk 
(t)(1) = 1  

3. ∣∣ p(
k
t)(x)∣∣ ≤ 2 

( 
1 +  

√ 
2t 
)−k 

for any x ∈ [0, 1 − t] 

We will provide no proof for this claim here, but the polynomials are derived from Chebyshev polynomials, 
and we’ll use them again later. To provide some intuition, figure 1 shows graphs of these polynomials for 
k = 10 with varying t. Notice that to keep the same bound for smaller values of t, a larger k is required due 
to the “oscillations” that the polynomial must take on in order to achieve p(1) = 1 while keeping p(x) small 
for x ∈ [0, 1 − t]. 
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Figure 1: (a) t = 0.1 (b) t = 0.001 (c) t = 0.001 zoomed in for x from 0.99 to 1 

If we set t = λ, we get a degree k polynomial, p, such that 

1. p(1) = 1  ( √ )−k 
2. |p(x)| ≤  2 1 +  2λ for any x ∈ [0, μ2]. 

Additionally, if we set k = 1 +  √1 ln (2n), then it is possible to show that p(x) < 1 for all x ∈ [0, μ2],2λ n 

which gives the following bound: ( )
1 

δ ≤ 1 +  √ ln (2n) (4)
2λ 

This is much better than our previous bound of δ ≤ ln(n) . So, strangely, by putting in a particular √ λ 

polynomial, we get a bound that grows with 1/ λ as opposed to just 1/λ. This foreshadows our next unit 
on iterative linear algebra. 

1.3 Example Application 

Suppose that you have a symmetric matrix M and want the eigenvector associated with the largest eigenvalue. 
For purposes of this example, let them be normalized such that the largest eigenvalue is 1. Then an easy 
way to get an approximate answer for the eigenvector is to compute Mkx for a large k and a random x. 
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Why does this give the eigenvector associated with μ1 = 1? If all other eigenvalues are less than 1, then for 
a large enough k, they will diminish in importance, until all that is left is v1. This is a very intuitive and 
natural algorithm that takes about 1/λ steps to get close. 

But we just found a much faster algorithm! Assuming that we know some good bound on λ (if we don’t, 
we could easily search for it), we can compute pk 

(λ)(M)x instead of Mkx to get the dominant eigenvector. 
This method converges much faster, and we’ll get into this more in a few lectures. 

2 Expanders 

If you had to know one set of graphs in your life, these are the ones to know. They often are a counterexample 
to many long-standing conjectures. Also, they turn up literally everywhere. If you didn’t know any better, 
you would think that they don’t exist from the described properties. But they’re almost every single graph. 
Specifically, we’ll be looking at families of d-regular graphs (Gn)n as n goes to infinity: 

Definition 7 (Gn)n is an expander family if λ2(Gn) ≥ c for some constant c and for all n. 

Most of the graphs we’ve looked at are not expanders. For example, path graphs have λ2 ≤ O(1/n2) 
and binary trees have λ2 ≤ O(1/n). This means that λ2 very quickly goes to zero as n → ∞ for both cases. 
Expanders don’t have this property. Even as n → ∞, λ2 stays above a constant. Given this, it’s not clear 
that they should exist. 

Note: We should think of d as a constant. In other words, we’ll pick a d and study expanders in that family. 

2.1 Relating Expanders to Cuts 

The first thing we’ll look at is Cheeger’s inequality for expanders. Recall that 

λ2 ≤ φ(G)
2 

For expanders, this implies 
c ≤ φ(G)
2 

What does this mean? It means that any set, S, of vertices with |S| ≤ n/2 has at least (c/2)|S| edges 
leaving it. This is a strong property: for expanders, there are no small cuts that can be made in the graph. 
Every cut that balances the sizes of the sets of vertices cuts a constant fraction of the edges in the graph. 

The other side of Cheeger’s inequality says 

φ(G)2 

Θ(1) ≤ λ2
d 

Again, for expanders, this can be rewritten. 

cd 
φ(G) ≤ 

2Θ(1) 

Since d is a constant, this says that the isoperimetry, φ, is also bounded above by a constant. Nor
mally, there’s a large gap between the upper-bound and lower-bounds in Cheeger’s inequality. Here we’ve 
sandwiched φ between two constants. Therefore, an equivalent definition of expanders is as follows: 

Definition 8 (Gn)n is expander family if φ(G) ≥ c′ for some constant c′ and all n. 
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2.2 Do Expanders Exist? 

A natural question is if expanders exist, what are the required parameters of the graphs? It turns out that 
random graphs are expanders, and so, almost all graphs are expanders. But, there’s a limit as to how “good” 
of an expander you can have: 

Claim 9 For any G, √ 
λ2 ≤ d − 2 d − 1 + o(1) (5) 

In other words, even though λ2 is always larger than a constant, there’s a limit as to how well-connected 
it can be. We won’t prove this. But this is not that strong a bound. We already know that λ2 ≤ d. This is √ 
just O( d) smaller. Furthermore, this bound is tight since Ramanujan graphs meet it. So that’s the limit 
of what an expander can be. 

2.3 Expanders and Randomness 

Expanders are all over the study of randomness, but we’ll just study one interesting property. We’ll use 
μ2 = d − λ2 to simplify formulas, where now, μ2 is the second largest eigenvalue of the adjacency matrix. 
Suppose you make a graph by randomly including each edge with probability d/n. In other words, construct 
a graph such that each vertex has an expected number of d edges leaving it. Since the total number of 
possible edges is |S||T | and there’s a d/n probability of having each edge, the expected number of edges 
between any two sets S and T will be d|S

n
||T | . 

Claim 10 Expander Mixing Lemma: If you choose any two vertex sets, S and T , the difference in the total 
number of edges between the two and the expected number for a random graph is bounded. Formally, 

e(S, T ) − 
d|S||T | μ2 ¯ ¯≤ |S| S |T | T 

n n 

¯ S ¯ T )min(|S|, ) · min(|T |,≤ μ2 

This is surprising because there is no randomness here. This is just a property associated with expanders, 
but it behaves similarly to random graphs. 
Proof Let α and β be the fraction of total vertices that are in the sets S and T : 

|S| = αn |T | = βn. 

Let x and y be the characteristic vectors of S and T , respectively. 

Definition 11 A characteristic vector, x, of a set S is a vector of length n that has xi = 1  if vi ∈ S, and 
xi = 0  otherwise. 

We can now write the number of edges between sets S and T as e(S, T ) =  xT Ay. Now, as you’ve probably 
noticed, it’s beneficial to use vectors that are perpendicular to the all-ones vector, 1. So, we’ll rewrite x and 
y as 

v = x − α1 w = y − β1. 

Clearly, v · 1 = w · 1 = 0, implying orthogonality. Rewriting the number of edges between sets S and T , we  
get 

e(S, T ) =  x T Ay 

= (v + α1)T A(w + β1) 
= v T Aw + v T Aβ1 + α1T Aw + α1T Aβ1. 
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Using the following identities, 
A1 = d1 1T A = d1T , 

we get 

e(S, T ) =  v T Aw + βvT A1 + α1T Aw + αβ1T A1 

= v T Aw + βvT d1 + αd1T w + αβd1T 1 

= v T Aw + αβdn, 

where we have used the orthogonality of v and w with 1 (i.e., vT 1 = 0) to cancel out the middle two terms. 
We now have the following bound: 

vT Aw|e(S, T ) − αβdn| = 

≤ |v||Aw| 
w|≤ |v|μ2|

μ2 (αn) ((1 − α)n) (βn) ((1 − β)n)= 
n 
μ2 |S| ¯ S |T | ¯ T ,= 
n 

where the third line follows from the fact that w is orthogonal to 1, and thus, μ2 

that can affect , and the fourth line follows from the fact that (1 ). To see this, note that | | −nα α=w v

1| − |αx √ 
(1 )2 +| | −S α 

is the largest eigenvalue 

|v| = 

¯ (−α)2S= 

= αn(1 − α)2 + (1  − α)nα2 

= αn(1 − α)(1 − α + α) 

= αn(1 − α), 

and the same steps show that |w| = nβ(1 − β). Thus, we have shown that |e(S, T ) − αβdn| ≤  μ2 |S|n 
¯ S |T | ¯ T . 

2.4 Some Properties We Now Know 

• Random walks on expanders mix in a logarithmic number of steps 

• Expanders have logarithmic diameter 

• Expanders have a constant isoperimetric number 

2.5 Vertex Expansion 

We’ve discussed cutting a graph and looking at the number of edges cut. An equivalent way of thinking 
about a cut is to select a set of vertices and then count the number of edges with one vertex in the set and 
one out. Another useful metric can be obtained by counting the number of vertices that are neighbors of a 
set. In other words, for a set of vertices, X, let N(X), be the set of vertices, Y , such that (x, y) ∈ E such 
that x ∈ X and y ∈ X̄. 

Claim 12 

N(X) ≥ 
d2|X|

μ2 + (d2 − μ2)|X|/n 
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We don’t prove this, but the high level idea is the following: 

• Select a set of vertices from G. Call this set X. 

• Let Y be the set of vertices that are neither in X nor in N (X). In other words, Y = V \(N(X) ∪ X). 

• Now, by construction, we have that e(X, Y ) = 0.  

Algebra gets a little messy, but you can just plug the above into the expander mixing lemma to show √ 
this bound. It turns out also that for X/n small and μ = 2  d − 1, we can achieve 

d 
N(X) ≥ |X|.

4 

Why is this interesting? What this is saying is that for any set X, there are at least d/4 neighbors not in X. 
Since each vertex has d neighbors total, this bound is quite strong. It turns out that this is about as good 
as you can get with spectral graph theory. To see this, we will generalize the vertex expansion as follows. 

We want to show bounds of the form |N(S)| ≥  γ|S|. In other words, we want to say that the vertex 
expansion of G is greater than or equal to γ for any S. Sometimes we’ll only care about expansions of smaller 
sets (e.g., for |S| ≤ 0.01n). 

Definition 13 G is an (α, β)-expander if for αβ < 1 and all sets S with |S| ≤ αn have |N(S)| ≥ β|S|. 

We showed that Ramanujan graphs are (α, d/4) expanders for some constant α. Some applications need 
expansion greater than d/2 but with small (constant) α. These exist, but we can’t prove better than d/2 
with spectral techniques.3 

2.6 Bipartite Expanders 

Many of the applications of expanders use bipartite expanders. These are just expanders that are bipartite 
graphs. It is easier to show that these exists (it will be a homework problem!). 

Definition 14 A d-regular bipartite graph is an (α, β)-expander if every set S on the left with |S| ≤ αn has 
N(S) ≥ β|S|. 

Whenever αβ < 1, there exists some d such that almost all d-regular graphs on n nodes (for n sufficiently 
large), are (α, β)-expanders. 

3It turns out that random graphs work here. In 2002, Capalbo, Reingold, Vadhan, and Wigderson gave an explicit construc
tion technique with expansion d − o(1). 

6-8 



MIT OpenCourseWare
http://ocw.mit.edu 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit
Fall 2009 

http://ocw.mit.edu
http://ocw.mit.edu/terms


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice




