Lecture 17

Lecturer: Jonathan Kelner

1 Johnson-Lindenstrauss Theorem

1.1 Recap

We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from last time:
Theorem 1 (Measure concentration on the sphere) Let \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^{n} and $A \in \mathbb{S}^{n-1}$ be a measurable set with $\operatorname{vol}(A) \geq 1 / 2$, and let A_{ε} denote the set of points of \mathbb{S}^{n-1} with distance at most ε from A. Then $\operatorname{vol}\left(A_{\varepsilon}\right) \geq 1-e^{-n \varepsilon^{2} / 2}$.

This theorem basically says that: When we get a set A which is greater or equal to half of the sphere, if we further incorporate points at most ε away from A, we almost have the whole sphere.

Definition 2 (c-Lipschitz) A function $f: A \rightarrow B$ is c-Lipschitz if, for any $u, v \in A$, we have $\| f(u)-$ $f(v)\|\leq c \cdot\| u-v \|$

For a unit vector $x \in \mathbb{S}^{n-1}$, the projection of the first k dimension is a 1 -Lipschitz function,:

$$
f(x)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}}
$$

Lemma 3 For a unit vector $x \in \mathbb{S}^{n-1}$, and $f(x)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}}$. Let x be a vector randomly chosen with uniform distribution from \mathbb{S}^{n-1} and M be the median of $f(x)$. Then $f(x)$ is sharply concentrated with:

$$
\operatorname{Pr}[|f(x)-M| \geq t] \leq 2 e^{-t^{2} n / 2}
$$

1.2 Metric Embedding

Definition 4 (D-embedding) Suppose that $X=\left\{x_{1}, x_{2}, \cdots x_{n}\right\}$ is a finite set, d is a metric on X, and $f: X \rightarrow \mathbb{R}^{k}$ is 1-Lipschitz, with $\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\| \leq d\left(x_{i}, x_{j}\right)$. The "distortion" of f is the minimum D for which

$$
\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\| \leq d\left(x_{i}, x_{j}\right) \leq D\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|
$$

for some positive constant α. We refer to f as a D-embedding of X.
Claim of Johnson-Lindenstrauss Theorem: The Euclidean metric on any finite set X (a bunch of high dimensional points) can be embedded with distortion $D=1+\varepsilon$ in \mathbb{R}^{k} for $k=O\left(\varepsilon^{-2} \log n\right)$.

If we lose $\varepsilon(\varepsilon=0)$, it becomes almost impossible to do better than that in \mathbb{R}^{n}. Nevertheless, it is not hard to construct a counter example to this: a simplex of $n+1$ points. The Johnson-Lindenstrauss theorem gives us an interesting result: if we project x to a random subspace, the projection y give us an approximate length of x for some fixed multiplication factor c, i.e. $\|x\| \sim c \cdot\|y\|$. And $c \cdot y$ is embedded with distortion $D=1+\varepsilon$.

1.3 Proof of the Theorem

Next, we provide a more precise statement about Johnson-Lindenstrauss Theorem:

Theorem 5 (Johnson-Lindenstrauss) Let $X=\left\{x_{1}, x_{2}, \cdots x_{n}\right\} \in \mathbb{R}^{m}$ (for any m) and let $k=O\left(\varepsilon^{-2} \log n\right)$. For:

- $\mathfrak{L} \subseteq \mathbb{R}^{m}$ be a uniform random k dimensional subspace.
- $\left\{y_{1}, y_{2}, \cdots y_{n}\right\}$ be projections of x_{i} on \mathfrak{L}.
- $y_{i}^{\prime}=c y_{i}$ for some fixed constant c, and $c=\Theta\left(\frac{k}{m}\right)$

Then, with high probability \mathfrak{L} is a $(1+\varepsilon)$-embedding of X into \mathbb{R}^{k}, i.e. for $x_{i}, x_{j} \in X$

$$
\left\|x_{i}-x_{j}\right\| \leq\left\|y_{i}^{\prime}-y_{j}^{\prime}\right\| \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|
$$

Proof Let $\Pi_{\mathfrak{L}}: \mathbb{R}^{m} \rightarrow \mathfrak{L}$ be the orthogonal projection of \mathbb{R}^{m} vector into subspace \mathfrak{L}. For $x_{i}, x_{j} \in X$, we let x be the normalized unit vector of $x_{i}-x_{j}$, and we need to prove that

$$
(1-\phi) \cdot M\|x\| \leq\left\|\Pi_{\mathfrak{L}}(x)\right\| \leq(1+\phi) \cdot M\|x\|
$$

holds with high probability, where M is the median of the of the function $f=\sqrt{x_{1}^{2}+\cdots+x_{m}^{2}}$.
Following definition 4 , this shows that the mapping $\Pi_{\mathfrak{L}}$ is a D-embedding of X into \mathbb{R}^{k} with $D=\frac{1+\phi}{1-\phi}$. We let $\phi=\frac{\varepsilon}{3}$ so that $D=\frac{1+\varepsilon / 3}{1-\varepsilon / 3} \leq 1+\varepsilon$. Since $\|x\|=1$, it is equivalent to showing that the following inequality holds with high probability

$$
\begin{equation*}
\left|\left\|\Pi_{\mathfrak{L}}(x)\right\|-M\right|<\frac{\varepsilon}{3} M \tag{1}
\end{equation*}
$$

Lemma 3 describes the case when we have a random unit vector and project it onto a fixed subspace. It is actually identical to fixing a vector and projecting it onto a random subspace (we will describe how this random subspace is generated in the next subsection). We use Lemma 3 and plug in $t=\frac{\varepsilon}{3} M$; the probability inequality (1) does not hold is bounded by

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\left\|\Pi_{\mathfrak{L}}(x)\right\|-M\right| \geq \frac{\varepsilon}{3} M\right] & \leq 4 e^{-t^{2} m / 2} \\
& =4 e^{-\varepsilon^{2} M^{2} m / 18} \\
& \leq 4 e^{-\varepsilon^{2} k / 72} \\
& \leq 1 / m^{2}
\end{aligned}
$$

Line 4 holds since $k=O\left(\varepsilon^{-2} \log n\right)$ (for further details, please see [1]). Line 3 holds since $M=\Omega\left(\sqrt{\frac{k}{m}}\right)$, based on the following reasoning: We have that

$$
1=\mathbb{E}\left[\|X\|^{2}\right]=\sum \mathbb{E}\left[x_{i}^{2}\right]
$$

which implies that $\mathbb{E}\left[x_{i}^{2}\right]=\frac{1}{m}$. Consequently,

$$
\frac{k}{m}=\mathbb{E}\left[f^{2}\right] \leq \operatorname{Pr}[f \leq M+t](M+t)^{2}+\operatorname{Pr}[f>M+t] \max \left(f^{2}\right) \leq(M+t)^{2}+2 e^{-t^{2} m / 2}
$$

where we used the fact that $f^{2}=\sum_{i=1}^{k} x_{i}^{2}$. Taking $t=\Theta\left(\sqrt{\frac{k}{m}}\right)$, we have that $M=\Omega\left(\sqrt{\frac{k}{m}}\right)$.

1.4 Random Subspace

Here we describe how a random subspace is generated. We first provide a quick review about Gaussians, a multivariate Gaussian has PDF:

$$
p_{x}\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{(2 \pi)^{N / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

where Σ is a nonsingular covariance matrix and vector μ is the mean of x.
Gaussians have several nice properties. The following operations on Gaussian variables also yield Gaussian variables:

- Project onto a lower dimensional subspace.
- Restrict to a lower dimensional subspace, i.e. conditional probability.
- Any linear operations.

In addition, we can generate a vector with multi-dimensional Gaussian distribution by picking each coordinate according to a 1-dimensional Gaussian distribution.

How do we generate a random vector from a sphere? The idea here is to pick a point from a multidimensional Gaussian distribution (generate each coordinate with mean $=0$ and variance $=1, N(0,1)$) so most n-dimensional vectors have norm \sqrt{n}. As the shape of an independent Gaussian distribution's PDF is symmetric, this procedure does indeed generate a point randomly and uniformly from a sphere (after normalizing it). Generating a random vector from a uniform distribution does not work, since it is not sampling uniformly from a sphere after normalization.

How do we get a random projection? This is no more than sampling $n \times k$ times from a $N(0,1)$ gaussian distributions. Each k samples are grouped to form a k-dimensional vector, so we have n total vectors: $v_{1}, v_{2}, \cdots v_{n}$. We can simply orthonormalize these vectors, denoted as \hat{v}_{i}, and form the random subspace \mathfrak{L} :

$$
\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
\hat{v}_{1} & \hat{v}_{2} & \cdots & \hat{v}_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

1.5 Applications of Johnson-Lindenstrauss Theorem

The Johnson-Lindenstrauss Theorem is very useful in several application areas, since it can approximately solve many problems. Here we illustrate some of them:

- Proximity Problems : This is an immediate application of the J-L Theorem. This is the case when we get a set of points in a high dimensional space \mathbb{R}^{d} and we want to compute any property defined in terms of distance between points. Using the J-L theorem, we can actually solve the problem in a lower dimensional space (up to a distortion factor). Example problems here include closest pair, furthest pair, minimum spanning tree, minimum cost matching, and various clustering problems.
- On-line Problems : The problems of this type involve answering queries in a high dimensional space. This is usually done through partitioning a high dimensional space according to some error (distance) measure. However, this operation tends to be exponentially dependent on the dimension of the space, e.g., $\left(\frac{1}{\varepsilon}\right)^{d}$ (referred to as the "curse of dimensionality"). Projecting points of higher dimensional space into lower dimensional space significantly helps with these types of problems.
- Data Stream/Storage Problem : We obtain data in a stream but we cannot store it all due to some storage space restriction. One way of dealing with it is to maintain a count for each data entry and then see how the counts are distributed. The idea is to provide "sketches" of such data based on the J-L Theorem. For further details, please refer to Piotr Indyk's course and his survey paper.
In summary, applications that are related to dimensionality reduction are very likely to be a good platform for the J-L Theorem.

2 Dvoretsky's Theorem

Dvoretsky's Theorem, proved by Aryeh Dvoretsky in his article "A Theorem on Convex Bodies and Applications to Banach Spaces" in 1959, tries to answer the following question:

- Let C be an origin-symmetric convex body in \mathbb{R}^{n}.
- $S \subseteq \mathbb{R}^{n}$ be a vector subspace.
- We would like to know: does $Y=C \cap S$ look like a sphere? Furthermore, for how high a dimension (we denote it as k) does there exist an S for which this occurs?

A formal statement of Y 's similarity to a sphere can be characterized by whether Y has a small Banach-Mazur distance to the sphere, i.e. if there exists a linear transformation such that

$$
\mathbb{S}^{k-1}(1) \leq Y \leq \mathbb{S}^{k-1}(1+\varepsilon)
$$

where $\mathbb{S}^{k-1}(r)$ is denoted as a sphere with radius r.
It turns out that k varies with different types of convex bodies: for a ellipsoid $k=n$, for a cross-polytope $k=\Theta(n)$, and for a cube is $k=\log (n)$. It turns out that the cube case is the worst case scenario. Here is a formal statement of Dvoretsky's Theorem:

Theorem 6 (Dvoretsky) There is a positive constant $c>0$ such that, for all ε and n, every n-dimensional origin-symmetric convex body has a section within distance $1+\varepsilon$ of the unit ball of dimension

$$
k \geq \frac{c \varepsilon^{2}}{\log \left(1+\varepsilon^{-1}\right)} \log n
$$

Instead of providing the whole proof, we give a sketch of the proof here:

1. When we are given an origin-symmetric convex body, denoted as C, it defines some norm with respect to the convex body: $C \rightarrow\|\cdot\|_{C}$.
2. We need a subspace S to be spherical. It is basically saying that when we take any vector θ on S, then $\|\theta\|_{C}$ is approximately constant.
3. This is similar to concentration of measures which we have shown before. It basically says that when we have a function defined as a norm $f: \theta \rightarrow\|\theta\|_{C}$, it is precisely concentrated for every θ on the sphere (i.e. every $\|\theta\|_{C}$ is close to median).
4. This is similar to Johnson-Lindenstrauss except that we need every vector in k-dimensional subspace satisfying point 2 (In the J-L theorem, we prove that most of the vectors (points) are close to a fixed constant, i.e. median).
5. What we do is to put a fine "mesh" on the k-dimensional subspace and show that every point on the grid is right. The number of points we need to check is approximately $O\left(\left(\frac{4}{\delta}\right)^{k}\right)$ where δ is the error. We can see that it is exponentially dependent on k and it looks similar to the dependency of k in the J-L theorem. For further details of the proof, please see [2].

References

1. Sariel Har-Peled, "Geometric Approximation Algorithms", http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx
2. Aryeh Dvoretzky, "Some results on convex bodies and Banach spaces", Proceedings of the National Academy of Sciences, 1959.

MIT OpenCourseWare
http://ocw.mit.edu

18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

