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1 Johnson-Lindenstrauss Theorem

1.1 Recap

We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from last time:

Theorem 1 (Measure concentration on the sphere) Let Sn−1 be the unit sphere in Rn and A ∈ Sn−1

be a measurable set with vol(A) ≥ 1/2, and let Aε denote the set of points of Sn−1 with distance at most ε
from A. Then vol(Aε) ≥ 1− e− 2nε /2.

This theorem basically says that: When we get a set A which is greater or equal to half of the sphere, if
we further incorporate points at most ε away from A, we almost have the whole sphere.

Definition 2 (c-Lipschitz) A function f : A → B is c-Lipschitz if, for any u, v ∈ A, we have ‖f(u) −
f(v)‖ ≤ c · ‖u− v‖

For a unit vector x ∈ Sn−1, the projection of the first k dimension is a 1-Lipschitz function,:

f(x) =
√
x2

1 + x2
2 + · · ·+ x2

k

Lemma 3 For a unit vector x ∈ Sn−1, and f(x) =
√
x2

1 + x2
2 + · · ·+ x2

k. Let x be a vector randomly chosen
with uniform distribution from Sn−1 and M be the median of f(x). Then f(x) is sharply concentrated with:

2
Pr[|f(x)−M | ≥ t] ≤ 2e−t n/2

1.2 Metric Embedding

Definition 4 (D-embedding) Suppose that X = {x1 2 n

f : X → Rk is 1-Lipschitz, with ‖f(xi) − f(xj)‖ ≤ d(xi, xj). The “distortion” of f is the minimum D for
which

‖f(xi)− f(xj)‖ ≤ d(xi, xj) ≤ D‖f(xi)− f(xj)‖

for some positive constant α. We refer to f as a D-embedding of X.

Claim of Johnson-Lindenstrauss Theorem: The Euclidean metric on any finite set X (a bunch of
high dimensional points) can be embedded with distortion D = 1 + ε in Rk for k = O(ε−2 log n).

If we lose ε (ε = 0), it becomes almost impossible to do better than that in Rn. Nevertheless, it is not
hard to construct a counter example to this: a simplex of n+ 1 points. The Johnson-Lindenstrauss theorem
gives us an interesting result: if we project x to a random subspace, the projection y give us an approximate
length of x for some fixed multiplication factor c, i.e. ‖x‖ ∼ c · ‖y‖. And c · y is embedded with distortion
D = 1 + ε.

1.3 Proof of the Theorem

Next, we provide a more precise statement about Johnson-Lindenstrauss Theorem:
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, x , · · ·x } is a finite set, d is a metric on X, and



Theorem 5 (Johnson-Lindenstrauss) Let X = {x1, x2, · · ·xn} ∈ Rm (for any m) and let k = O(ε−2 log n).
For:

• L ⊆ Rm be a uniform random k dimensional subspace.

• {y1, y2, · · · yn} be projections of xi on L.

• yi′ = cy k
i for some fixed constant c, and c = Θ(m )

Then, with high probability L is a (1 + ε)-embedding of X into Rk, i.e. for xi, xj ∈ X

‖xi − xj‖ ≤ ‖yi′ − yj′ ‖ ≤ (1 + ε)‖xi − xj‖

Proof Let ΠL : Rm → L be the orthogonal projection of Rm vector into subspace L. For xi, xj ∈ X, we
let x be the normalized unit vector of xi − xj , and we need to prove that

(1− φ) ·M‖x‖ ≤ ‖ΠL(x)‖ ≤ (1 + φ) ·M‖x‖

holds with high probability, where M is the median of the of the function f =
√
x2

1 + · · ·+ x2
m.

Following definition 4, this shows that the mapping ΠL is a D-embedding of X into Rk with D = 1+φ
1−φ .

We let φ = ε 1+D3 so that = ε/3 ε1 ε/3 ≤ 1 + . Since ‖x‖ = 1, it is equivalent to showing that the following−
inequality holds with high probability

ε|‖ΠL(x)‖ −M | < M (1)
3

Lemma 3 describes the case when we have a random unit vector and project it onto a fixed subspace. It
is actually identical to fixing a vector and projecting it onto a random subspace (we will describe how this
random subspace is generated in the next subsection). We use Lemma 3 and plug in t = εM3 ; the probability
inequality (1) does not hold is bounded by

Pr
[ ε|‖ΠL(x)‖ −M | ≥

2
M

3

]
≤ 4e−t m/2

= 4e−
2 2ε M m/18

≤ 4e−
2ε k/72

≤ 1/m2

Line 4 holds since k = O(ε−2 log n) (for further details, please see [1]). Line 3 holds since M = Ω(
√

k
m ),

based on the following reasoning: We have that

1 = E[‖X‖2] =

whic

∑
E[x2

i ],

h implies that E[x2
i ] = 1

m . Consequently,

k
= E[

2
f2] ≤ Pr[f ≤M + t](M + t)2 + Pr[f > M + t] max(f2) ≤ (M + t)2 + 2e−t m/2,

m

where we used the fact that k
f2 =

∑
i=1 x

2
i . Taking t = Θ(

√
k Mm ), we have that = Ω(

√
k
m ).
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1.4 Random Subspace

Here we describe how a random subspace is generated. We first provide a quick review about Gaussians, a
multivariate Gaussian has PDF:

1
px(x1, x2, · · · , xN ) =

1
exp(

(2π)N/2|Σ|1/2
− (x− µ)TΣ−1(x

2
− µ))

where Σ is a nonsingular covariance matrix and vector µ is the mean of x.
Gaussians have several nice properties. The following operations on Gaussian variables also yield Gaussian

variables:

• Project onto a lower dimensional subspace.

• Restrict to a lower dimensional subspace, i.e. conditional probability.

• Any linear operations.

In addition, we can generate a vector with multi-dimensional Gaussian distribution by picking each
coordinate according to a 1-dimensional Gaussian distribution.

How do we generate a random vector from a sphere? The idea here is to pick a point from a multi-
dimensional Gaussian distribution (generate each coordinate with mean = 0 and variance = 1, N(0, 1)) so
most n-dimensional vectors have norm

√
n. As the shape of an independent Gaussian distribution’s PDF

is symmetric, this procedure does indeed generate a point randomly and uniformly from a sphere (after
normalizing it). Generating a random vector from a uniform distribution does not work, since it is not
sampling uniformly from a sphere after normalization.

How do we get a random projection? This is no more than sampling n× k times from a N(0, 1) gaussian
distributions. Each k samples are grouped to form a k-dimensional vector, so we have n total vectors:
v1, v2, · · · vn. We can simply orthonormalize these vectors, denoted as v̂i, and form the random subspace L: . . .. . . . . . v̂1 v̂2 · · · v̂n


. . .. . .. . .


1.5 Applications of Johnson-Lindenstrauss Theorem

The Johnson-Lindenstrauss Theorem is very useful in several application areas, since it can approximately
solve many problems. Here we illustrate some of them:

• Proximity Problems : This is an immediate application of the J-L Theorem. This is the case when
we get a set of points in a high dimensional space Rd and we want to compute any property defined in
terms of distance between points. Using the J-L theorem, we can actually solve the problem in a lower
dimensional space (up to a distortion factor). Example problems here include closest pair, furthest
pair, minimum spanning tree, minimum cost matching, and various clustering problems.

• On-line Problems : The problems of this type involve answering queries in a high dimensional space.
This is usually done through partitioning a high dimensional space according to some error (distance)
measure.( However, this operation tends to be exponentially dependent on the dimension of the space,
e.g., 1 d

ε (referred to as the “curse of dimensionality”). Projecting points of higher dimensional space
into low

)
er dimensional space significantly helps with these types of problems.

• Data Stream/Storage Problem : We obtain data in a stream but we cannot store it all due to
some storage space restriction. One way of dealing with it is to maintain a count for each data entry
and then see how the counts are distributed. The idea is to provide “sketches” of such data based on
the J-L Theorem. For further details, please refer to Piotr Indyk’s course and his survey paper.

In summary, applications that are related to dimensionality reduction are very likely to be a good platform
for the J-L Theorem.
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2 Dvoretsky’s Theorem

Dvoretsky’s Theorem, proved by Aryeh Dvoretsky in his article “A Theorem on Convex Bodies and Appli-
cations to Banach Spaces” in 1959, tries to answer the following question:

• Let C be an origin-symmetric convex body in Rn.

• S ⊆ Rn be a vector subspace.

• We would like to know: does Y = C ∩ S look like a sphere? Furthermore, for how high a dimension
(we denote it as k) does there exist an S for which this occurs?

A formal statement of Y ’s similarity to a sphere can be characterized by whether Y has a small Banach-Mazur
distance to the sphere, i.e. if there exists a linear transformation such that

Sk−1(1) ≤ Y ≤ Sk−1(1 + ε)

where Sk−1(r) is denoted as a sphere with radius r.
It turns out that k varies with different types of convex bodies: for a ellipsoid k = n, for a cross-polytope

k = Θ(n), and for a cube is k = log(n). It turns out that the cube case is the worst case scenario. Here is a
formal statement of Dvoretsky’s Theorem:

Theorem 6 (Dvoretsky) There is a positive constant c > 0 such that, for all ε and n, every n-dimensional
origin-symmetric convex body has a section within distance 1 + ε of the unit ball of dimension

cε2
k ≥ log n

log(1 + ε−1)

Instead of providing the whole proof, we give a sketch of the proof here:

1. When we are given an origin-symmetric convex body, denoted as C, it defines some norm with respect
to the convex body: C → ‖ · ‖C .

2. We need a subspace S to be spherical. It is basically saying that when we take any vector θ on S, then
‖θ‖C is approximately constant.

3. This is similar to concentration of measures which we have shown before. It basically says that when
we have a function defined as a norm f : θ → ‖θ‖C , it is precisely concentrated for every θ on the
sphere (i.e. every ‖θ‖C is close to median).

4. This is similar to Johnson-Lindenstrauss except that we need every vector in k-dimensional subspace
satisfying point 2 (In the J-L theorem, we prove that most of the vectors (points) are close to a fixed
constant, i.e. median).

5. What we do is to put a fine “mesh” on the k-dimensional subspace and show that every point on the
grid is right. The number of points we need to check is approximately O(( 4 k

δ ) ) where δ is the error.
We can see that it is exponentially dependent on k and it looks similar to the dependency of k in the
J-L theorem. For further details of the proof, please see [2].
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