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Abstract 

When nonlinearities are “small” there are various ways one can exploit this 

fact — and the fact that the linearized problem can be solved exactly1 — to produce 

useful approximations to the solutions. 

We illustrate two of these techniques here, with examples from phase plane 

analysis: The Poincaré–Lindstedt method and the (more flexible) Two Timing 

method. This second method is a particular case of the Multiple Scales approxima

tion technique, which is useful whenever the solution of a problem involves effects that 

occur on very different scales. In the particular examples we consider, the different 

scales arise from the basic vibration frequency induced by the linear terms (fast scale) 

and from the (slow) scale over which the small nonlinear effects accumulate. 

The material in these notes is intended to amplify the topics covered in 

section 7.6 and problems 7.6.13–7.6.22 of the book “Nonlinear Dynamics 

and Chaos” by S. Strogatz. 

1Actually, one can also use these ideas when one has a nonlinear problem with known solution, and 

wishes to solve a slightly different one. But we will not talk about this here. 

1 
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1 PoincaréLindstedt Method (PLM). 

PLM is a technique for calculating periodic solutions. The idea is that, if the linearized 

equations have periodic solutions and 0 < � � 1 is a measure of the size of the nonlinear terms 

then: 

I. For any finite time period t0 t ≤ t0 + Tf (Tf > 0), the trajectories for the full ≤ 

system will remain pretty close to those of the linearized system (errors no worse than 

O(�Tf ), typically). 

II. On the other hand, even a small error is enough to destroy periodicity. An orbit that 

“closes on itself” after some time period, will generally fail to do so if slightly perturbed. 

Thus, typically, nonlinearity will destroy most periodic orbits the linearized system might 

have. Some, however, may survive2 −→ PLM is designed to pick those up. 

Even if a periodic orbit of the linearized system survives: 

III. The nonlinearity will change (slightly) the shape of the orbit. 

IV. The speed of “travel” along the orbit will be affected by the nonlinearity. In 

particular the period will change (slightly.) 

PLM takes care of these effects as follows:


A. The solution is approximated at leading order by the linear solution, but small correc

tions at higher orders are introduced to take care of the (small) shape changes. 

B. The linear solution is evaluated at a stretched time, to account for the change in period. 

The two examples that follow illustrate the ideas. 

1.1 Duffing Equation. 

The equation can be written in the form 

ẍ + x + �νx 3 = 0 , (1.1) 

2That is, if � u(t) is a periodic solution of the linearized system, then so is a�u = � u, for any scalar constant 

a. But for only a few values of a will periodicity “survive” the effect of the nonlinearity. 



� 

18.385j/2.036j, MIT  Weakly  Nonlinear  Things:  Oscillators.  4 

where 0 < � � 1 and ν = ±1. This equation is actually a conservative system, with 

(conserved) energy 

E = 
1 
2 
ẋ 2 + 

1 
2 
x 2 + 

1 
4 
�νx 4 . (1.2) 

Thus all orbits for x bounded will be periodic.3 PLM will allow us to calculate corrections 

to the linear period of 2π and sinusoidal orbit shape (for the bounded orbits). 

The PLM expansion is given by: 

x(t) = x0(T ) + �x1(T ) + �2 (1.3)x2(T ) + · · · , 

where xj = xj (T ) is periodic of period 2π in T and does not depend on �. T = ωt is the 

stretched time variable, where 

ω = 1 + �ω1 + �2ω2 + · · · , (1.4) 

is a (real, positive) constant to be computed. The nonlinear period is then 2π/ω. 

Note 1 x0(T ) will be the solution to the linearized problem, so (1.3) will reduce to the 

right answer when � = 0. 

We now proceed as follows: 

• 

= 

First: Rewrite (1.1) in terms of the new independent variable T , replacing =· d by 
dt 

d dvia
dT dt = ω d . Thus: 

dT 

ω2 x�� + x + � ν x 3 = 0 . (1.5) 

Second: Substitute (1.3) and (1.4) into (1.5) and collect equal powers4 of �. Then require• 

that the equation be satisfied at each level in �. Thus we get an equation for each order �p, 

which determine higher and higher orders of approximation in the expansion (1.3), as follows. 

3Notice that, for ν = 1 ALL orbits are periodic. However, for ν = −1, orbits where x > �−| | 1 
2 are 

not periodic. This follows from looking at the level curves for E in the (x, ẋ) phase plane. Of course, when 

| | = O(�−
1 
2 ), the nonlinear term in equation (1.1) has the same size as the linear terms: the problem is no 

longer “weakly nonlinear”. Thus, we should not be surprised if the solution exhibits behavior not close to 

the linearized one. 
4This is the messy part. It means you have to plug (1.3) and (1.4) into (1.5), then do all the products, 

etc. . . . so as to end with the equation written as: = 0. {· · ·}+ � {· · ·}+ �2 {· · ·}+ · · · 

x
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O(1) equation: 

x��0 + x0 = 0 . (1.6) 

Clearly then 

x0 = a cos T , (1.7) 

where a is, at this stage, an arbitrary constant.5 

O(�) equation: x��1 + 2ω1x
��
0 + x1 + νx3 

0 = 0, that is: 

x��1 + x1 = 

= 

2ω1a cos T − νa3 cos3 T = 
�
2ω1a − 3 

4 νa3
� 

cos T − 1 
4 νa3 cos 3T . 

(1.8) 

The form of equation (1.8) is typical of all the higher order equations. 

Namely, we get the linear equation for the new term in x at that order — x1 

here — forced by terms involving the lower orders already solved for. 

The solution x1 to (1.8) will be 2πperiodic in T only if the coefficient of the cos T term on 

the right hand side (terms between the brackets) vanishes. This is because this term will 

produce a response in x1 proportional to T sin T , which is clearly not periodic. Since we 

are interested in a nontrivial solution (that is a = 0) we conclude that: 

3ω1 = 
8 νa2 , 

(1.9)
1 x1 = 
32 νa3 cos 3T + A cos T + B sin T , 

where the term marked by the brace in the second equation is the arbitrary homogeneous 

solution, with A and B arbitrary constants. The first equation here determines the first 

frequency correction, in terms of the amplitude6 of the oscillations a, which remains arbitrary 

at this level.7 We note also that the homogeneous solution in the second equation above 

5In fact, in this case, a will remain arbitrary. There is also a phase shift we could include in (1.7). But 

this is just a matter of where we put the time origin (see appendix A.1). 
6This is typical of nonlinear oscillators: the frequency depends on the amplitude. 
7That is, no restrictions have been imposed by the expansion on it. In fact, it can be shown that no 

restrictions on a will appear at any level of the expansion. This is because there is in fact a whole one 

parameter set of periodic solutions, which can be parameterized by the amplitude a. 
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amounts to no more than a small change in the amplitude and phase of the leading order 

solution. That is: 

a cos T −→ (a + �A) cos T + �B sin T = a cos(T − T�) , 

for some �a and T�. Thus (see appendix A.1) 

Without Loss of Generality: we can set A = B = 0 in (1.9). (1.10) 

O(�2) equation: 2 + 2ω1x
��

1 ) x
��

0x1 = 0, that is: x�� 1 + (2ω2 + ω2
0 + x2 + 3νx2 

x�� 1 
9 3 5 

2 + x2 = 
�
2ω2 + ω2

� 
a cos T + ω1νa 3 cos 3T − a cos 2 T cos 3T , (1.11)

16 32 
1 1where cos2 T cos 3T = cos T + 1 cos 3T + cos 5T . Again: x2 will be periodic only if the 
4 2 4 

coefficient of the cos T forcing term on the right hand side here vanishes. This yields 

1 3 4 15 4ω2 = a = a (1.12)− 
2 
ω1

2 + 
256 

− 
256 

and an explicit formula for x2, which we do not display here. Clearly, this process can be 

carried to any desired order (see appendix A.2). 

In summary, we have found for the solutions8 of the Duffing equation: 

1 x ∼ a cos T + 32 �νa3 cos 3T + O(�2) , 

T = ωt , 

15 4ω ∼ 1 + 3 
8 �νa2 − 256 �

2a + O(�3) . 

(1.13) 

1.2 van der Pol equation. 

The equation has the form 

ẍ − �ν(1 − x 2) ̇x + x = 0 , (1.14) 

where 0 < � � 1 and ν = ± 1. We use now the same ideas of section 1.1, so that (1.3) and 

(1.4) still apply. Instead of (1.5) we get now 

2ω2 x�� + x − �νω(1 − x )x� = 0 . (1.15) 

8Notice that this is valid only as long as 0 ≤ a2 � �−1 . When a = O(�−| | 1 
2 ), the “corrections” cease to 

be smaller than the leading order and the expansion fails. This agrees with our observations in footnote 3. 



�
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We proceed now to look at the expansion order by order. 

At O(1) we get, as before (see appendix A.3): 

x0 = a cos T. (1.16) 

O(�) equation: 1 + 2ω1x
�� 2x�� 0 + x1 − ν(1 − x0)x0

� = 0, that is: 

x�� + x1 = 2ω1a cos T − νa sin T + νa3 cos2 T sin T 

2 1 = 2ω1a cos T + νa 
� 

1 a − 1
� 

sin T + νa3 sin 3T . 
(1.17) 

4 4 

To get a periodic solution x1, both the coefficients of cos T and sin T must vanish on the 

right hand side = ⇒ For a nontrivial solution (a = 0) we must have9: 

1 
a = 2 , ω1 = 0 and x1 = − 

32 
νa 3 sin 3T + A cos T + B sin T . (1.18) 

Note 2 There is an important difference here with the situation in the analog equations 

(1.8) and (1.9). Now both sines and cosines appear on the right hand side of equation (1.17). 

Thus we end up with TWO conditions that must be satisfied if equation (1.17) is to have 

a periodic solution for x1. These conditions are generally called Solvability Conditions. 

Thus now BOTH a and ω1 are determined. There is NO FREE PARAMETER left and 

there is just one periodic orbit: the LIMIT CYCLE. 

Since now a is fixed to be a = 2, we can no longer argue that by a slight change in 

the amplitude and phase of x0, we can set A = B = 0 (homogeneous part of the solution, 

marked by the brace above), as we did in (1.10). It is still true, however, that the phase of 

the leading order x0 can be changed slightly. We can then use this to conclude (see appendix 

A.3) 

Without Loss of Generality: we can set B = 0 in (1.18). (1.19) 

On the other hand, we point out that A remains to be determined. That is, the circular 

part of the limit cycle orbit does not have a radius exactly equal to 2, but rather equal to 

2 + �A + . . . 
9We could take a = −2 also. This, however, is just a phase change T T + π. Thus, we may as well → 

assume a > 0. 
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At the next order (that is, O(�2)) we will get an equation of the form: 

2 + x2 = Forcing .	 (1.20)x��

Again (see note 3) sine and cosine forcing terms on the right will have to be eliminated. 

This will produce two conditions, that will determine both A and ω2 uniquely. In x2 an 

homogeneous term of the form α cos T will appear,10 with α and ω3 determined at O(�3). 

And so on to higher and higher orders. 

A unique solution, up to a phase shift, is produced 
(1.21) 

this way to all orders: The LIMIT CYCLE. 

Note 3 In fact, after some calculation — using (1.16), (1.18) and (1.19) — we can see 

that (1.20) is: 

x��	 1 2 
2 + x2 = 

�
2ω2 + 

128 a
4
� 
a cos T + 

� 
3 a − 1

� 
νA sin T

4 (1.22)
3 3	 3 5 a (2 − a2) cos 3T + νAa2 sin 3T + a5 cos 5T . 
64	 4 128

− 

Thus we conclude 

3 3	 5 
ω2 =

1 
a 4 , A = 0 and x2 = α cos T + a (2 − a 2) cos 3T − a 5 cos 5T , (1.23)− 

256 512 3072 

where we recall that a = 2. 

2	 Two Timing, Multiple Scales method (TTMS) 

for the van der Pol equation. 

2.1	 Calculation of the limit cycle and stability. 

In section 1.1 we basically obtained all the solutions to the Duffing equation (1.1) — 

since we ended up with two free parameters: the amplitude a and an arbitrary phase shift 

T → T − T0. On the other hand, in section 1.2 we only obtained the limit cycle solution. 

Now, suppose we want all the solutions to the van der Pol equation (1.14) — this will 

10With a “βsinT ” homogeneous part of the solution eliminated just as above in (1.19) 
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allow us to determine, in particular, the stability of the limit cycle. The method we introduce 

in this section (TTMS) will allow us to do this. 

The main idea is that, if the solution is not periodic, then we cannot represent it 

with a single solution of the linearized equation (as we did in section 1, with its time 

dependence stretched by ω from t to T = ωt — to allow for nonlinear corrections to the 

period.11) For any “short” time period this will be O.K., but over long periods large errors 

may result because they accumulate. To resolve this difficulty we will allow ALL the 

parameters of the linear solution to change SLOWLY in time, so as to track the 

true evolution of the solution. Thus, for equation (1.14), we expand12: 

x ∼ x0(τ, t) + �x1(τ, t) + �2 x2(τ, t) + · · · , (2.1) 

where t takes care of the “normal” 2πperiodic dependence induced by the linear solution 

and τ = �t is the slow time (that will allow the linear solution being used to drift (slowly) 

as time evolves, from one linear orbit to the next.13) 

Remark 1 Note that now the solution depends explicitly on two times, thus the name 

for the method. In this case the “slow” time is τ = �t, but in other problems it may be 

τ = �2t — or something else. Figuring out what the exact dependence should be need not be 

trivial and usually requires some thinking: it is related to the rate at which the nonlinearity 

causes drift in the orbits — as opposed to just shape changes. We will talk about this later. 

We now rewrite equation (1.14) in terms of the increased set of “independent” variables 

τ and t to obtain (here a dot indicates differentiation with respect to t ): 

¨ 2 2x + 2�ẋτ + �2 xττ + x − �ν(1 − x ) ̇x − �2ν(1 − x )xτ = 0 . (2.2) 

Note that the equation is now a P. D. E. ! This method appears to complicate things! How

ever, the extra terms are multiplied by � and �2 and so at leading order we only get the linear 

O. D. E. In fact: we will only have to solve linear O. D. E.’s at each order in the approximation! 

11Namely: the orbits in phase space are quite close to the linear ones, but the speed at which they are 

tracked is slightly different = ⇒ Over long times a big error will accumulate, unless we correct for it. 
12This is only a first, very simple, implementation. We will introduce a more refined one in section 2.3. 
13This description, strictly, only applies to x0 above. The higher order terms �x1 . . . are there to account 

for the fact that the nonlinear orbits will have slightly different shapes than the linear ones. 
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As usual, we now substitute the expansion (2.1) into equation (2.2) and collect equal 

powers of � to obtain 

O(1) equation: 

0 + x0 = 0 .	 (2.3)x��

This is the same as in section 1.2, except that now the arbitrary “constants” in the solution 

of (2.3) will depend on τ . We thus have 

x0 = A0(τ )e it + c.c. ,	 (2.4) 

where c.c. denotes complex conjugate and A0 is complex valued. 

1Remark 2 Alternatively, we could write x0 = a(τ ) cos t + b(τ ) sin t, where A = 
2 (a − ib). 

We cannot now argue, as we did before, that it is O.K. to set b = 0 using the fact that a 

change of time origin t t + t0 is allowed. This is because t0 has to be constant, while → 

setting an arbitrary b(τ ) to zero would require t0 = t0(τ ), at least in principle.14 

Remark 3 The use of complex notation in (2.4) makes life simpler. The kind of expan

sions we are doing require at each level of approximation that one expand things like x3 in0 

Fourier modes. This is much easier to do with exponentials than with sine and cosines! 

At O(�) we obtain: 

¨	 2x1 + x1 =	 −2 ̇x0 τ + ν(1 − x0) ̇x0 �
−2i 

� 
d 1

0e
3it

� 
+ c.c. . 

(2.5) 
= 

dτ A0 − 
2 νA0 

�
1 − A0

2
�� 

eit − iνA3| | 

This equation is very similar to (1.17), except that now: (i) We are using complex nota

dtion, (ii) There is no ω1 term and (iii) A new term in 
dτ A0 appears because of the allowed 

τ dependence. The solution x1 will be periodic in t provided the coefficient of the eit forcing 

on the right hand side of (2.5) vanishes. This yields the equation 

1d A0 = 
2 ν 

�
1 − A0

2
� 
A0, (2.6)

dτ	 | | 

14Actually, an argument to set b = 0 can be made, namely: we expect the solutions of equation (1.14) to 

be basically oscillatory. Thus, they will have maximums and minimums. If we set t = 0 to occur at a local 

maximum, then ẋ = 0 at t = 0, which yields b = 0. But this argument will not work at higher orders. 
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which governs the evolution15 of the amplitude A0 for the linear (circular) orbits under the 

effect of the weak nonlinearity. 

1If we let A0 = 
2 aeiϕ , where a and ϕ are a real amplitude and phase, respectively, then16 

d d 1 
ϕ = 0 and a = ν(4 − a 2)a . (2.7)

dτ dτ 8 

These formulas show that the orbits in the phase plane are nearly circular, with a slowly changing 

radius a that evolves following the second equation in (2.7) and a limit cycle for a = 2. In 

particular: 

For ν = 1 the limit cycle is stable and it is unstable for ν = −1. (2.8) 

If we let µ = �ν in (1.14) and write the equation as


¨
x − µ(1 − x 2) ̇x + x = 0 , (2.9) 

then we see that our calculations here show that at µ = 0 we have a bifurcation, with an 

exchange of stability between the limit cycle and the critical point at the origin.


µ < 0. Unstable limit cycle and stable spiral point.


µ > 0. Stable limit cycle and unstable spiral point.
 (2.10) 

µ = 0. Center with continuoum of periodic orbits. (There is no limit cycle.) 

2.2 Higher orders and limitations of TTMS. 

We us now finish the O(�) calculation and solve equation (2.5) using (2.6). We have


x1 = 
� 

1 
iνA3 3it it

�


0e + A1(τ )e + c.c. , (2.11)
8 

where A1 is complex valued. 

Let us now continue the expansion to one more order, as there is an important detail to 

be learned from doing this. 

15Drift in phase space


16Since this shows that ϕ is a constant, we could have taken b = 0 in remark 2 !
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The O(�2) equation is: 

ẍ2 + x2 = −2 ̇x1τ − x0τ τ + νẋ1 + νx0τ − νx2ẋ1 − 2νx0x1ẋ0 − νx2 
0 0x0τ 

1 1
�

1 − 1 νA1 + ν A2 A1 + 
2 νA2A∗ iνA�= −2i 

�
A�

2 0 0 1 + 
2 0 − 

2 iA
��
0 

1 1iν ( A2 A0)
� 
+ 

16 i 

|
|A4 

|
A0 

� 
eit + (. . .)e3it + (. . .)e

1

5it
� 

+ c.c. , 

(2.12) 

2 0 0− | | |

dwhere = and A∗ denotes the complex conjugate of A1. Thus, to avoid secular terms1
� 

dτ 

in x2 (namely: terms proportional to t eit , that destroy the periodicity in t) the coefficient 

of eit on the right hand side of this last equation must vanish. Thus 

1 1 1 1 1 1 
1 − 

2 
νA1 + ν 

���A2
��� A1 + νA2A∗ = −

2 
iνA0

� + iA��A�
0 2 0 1 0 + iν 

����A2
��� A0 

�� − 
16 

i 
���A4

��� A0 . (2.13)02 2 0 

This is a rather messy equation. We do not aim to solve it here; but only to analyze its behavior 

for τ large. 

Assume ν = 1: In this case the limit cycle is stable and, for τ large — see equation 

(2.7) — A0 ∼ eiϕ , for some constant ϕ. Then equation (2.13) reduces to 

1 1 1 
A1
� + A1 + e 2iϕA∗ = −

16 
ieiϕ . (2.14)

2 2 1 

This is much simpler and can be solved explicitly17 

1 �
A1 = 

�
C1e

−τ + iC2 − iτ e iϕ , (2.15)
16 

where C1 and C2 are real constants. This means that the solution of equation (2.13) 

will behave, for large τ , like 
1 

A1 ∼ −
16 

iτe iϕ . (2.16) 

This is “bad”. Notice that the expansion (2.1) for the solution of (1.14) — use equations 

(2.4) and (2.11) — is 

iτ 
� 1 

x ∼ 2 Re 
�
A0(τ)e − 

4 0(τ)e 3it
� 

+ 2� Re 
�
A1(τ)e it

� 
+ .� Im 

�
A3 · · · 

But, when �τ = O(1) the second term in the expansion will not be small at all (as 

i�τeiϕ) ! Thus
16

�A1 ∼ − 1 

The two timing expansion (2.1) is only valid as long as τ � �−1 . (2.17)| | 

iϕ 117Write A1 = ze . Then z� + Re(z) = − i.16 
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This is pretty typical for TTMS expansions: Usually they are valid for a time range 

where the “slow” time can be taken large — but not arbitrary large. Beyond some �−p, for 

some p, they fail. 

In the current situation (2.17) is not terribly upsetting. It still allows us to take τ fairly 

large. Once τ is large and the limit cycle is reached = ⇒ can switch to the expansion in section 

1.2 !! 

However: suppose that (2.17) makes us terribly unhappy, for whatever reasons. Then 

Can we fix the problem posed by (2.17)? (2.18) 

The answer to this question is YES, but first we must understand why (2.17) 

occurs! This is clarified next; for simplicity we CONSIDER ONLY the STABLE 

LIMIT CYCLE case, when ν = 1. 

Note 4 Equations (2.1)–(2.7) lead to an approximation of the limit cycle (for large τ , so 

that A0 ∼ eiϕ ) given by 

x ∼ 2 Re(e i(t+ϕ)) = 2 cos(t + ϕ) . (2.19) 

On the other hand, the PLM calculation of section 1.2 tells us that we should use 

i(ωt+ϕ)) ,x ∼ 2 cos(ωt + ϕ) = 2 Re(e 

where ω = 1 − 1 �2 + . Now, since (expand in Taylor series) 
16 · · · 

i(ωt+ϕ) i(t+ϕ)e−i 1 �2t+ i(t+ϕ) 1 i(t+ϕ) +e = e 16 ··· = e − 
16 

i�2te · · · , (2.20) 

we see that the error in (2.19) is − 1 i�2tei(t+ϕ) + · · · , which is precisely the “bad” behavior 
16


arising in A1 earlier in equation (2.16). Thus


The TTMS expansion goes bad because it does not properly take into account 

the fact that the nonlinearity affects the phase — i.e. the position along the (2.21) 

linear orbit of the solution. 

• It follows that, to achieve (2.18) we must fix the problem pointed out by (2.21). 

THIS WE DO NEXT. 
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2.3 Generalization of TTMS to extend the range of validity. 

Let φ be the phase of the solution — namely: its position along the orbit — and ω = d φ
dt 

its angular velocity. The phase increases with time and, for the linearized equation, we 

have 
d 

φ = ω = 1 . (2.22)
dt 

However, once nonlinear effects kick in, there is no reason for ω to remain equal to 1, 

or in fact even constant! 

Now, when considering a periodic orbit, as long as ω is approximated by its correct 

average value things will be O.K. (as then errors will not accumulate over time). This is 

what PLM does, by taking φ = T = ωt with ω = 1 + �ω1 + . We cannot use this · · · 
idea of PLM in TTMS, because now the orbit (thus the average value of ω) varies slowly 

as time changes. We must then allow ω to be a function of τ . Thus 

To fix the type of problem discussed in the previous section 2.2 we must replace 

the expansion (2.1) by a subtler type, where the phase (fast time) itself is to be determined. 

Generally we must deal then with expansions of the form 

x ∼ X0(τ, φ) + � X1(τ, φ) + �2 X2(τ, φ) + · · · , (2.23) 

where 2π–periodic dependence on the phase φ is required, τ = �t and 

d 
φ = ω = 1 + � ω1(τ) + �2 ω2(τ) + · · · . 

dt 

1 dThis amounts to writing: φ = 
� (τ + � φ1(τ) + �2 φ2(τ) + · · ·), where .φj = ωjdτ 

When no τ dependence is allowed, this reduces to PLM. We will not carry out the details of 

this expansion here — they are quite messy and some technicalities are involved in selecting 

the ωj ’s so that the Xj ’s behave “properly” as functions of τ (that is, no secular growth in τ 

occurs). On the other hand, in the particular case of the van der Pol equation (1.14), when 

the limit cycle is stable18: all solutions eventually approach the limit cycle, and they do so 

on time scales where τ � �−1 (as follows from our results in section 1.2). Thus, as long as 

no cumulative errors occur in tracking the limit cycle, there should be no problems. We can 

conclude thus, without doing any calculations, that: 

18That is, ν = 1. 
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For equation (1.14), in the case ν = 1: 

• The ωj ’s in equation (2.23) are constant and equal to the values calculated for the 

expansion in section 1.2. 

• The functional form of X0(τ, φ) in equation (2.23) is the same as that we obtained 

for x0(τ, t) in equation (2.1), with t replaced by φ. That is: X0(τ, φ) = x0(τ, φ). 

In particular, note that from this we learn that the TTMS approximation for the behavior 

of the van der Pol equation is quite good. The secular growth displayed by A1 in equation 

(2.16) for very long times is nothing to worry about. It is simply a manifestation of the 

fact that we have some small (very small, O(�2)) errors on the velocity at which the solution 

moves along the limit cycle, but of nothing else. No important qualitative or quantitative 

effect is missing. 

Note 5 Other ways to fix the problem in (2.17) can be devised. For example, some people 

advocate introducing ever slower time scales, such as �2t, �3t and so on — in addition to 

the �t of equation (2.1). This is not a good idea, unless the problem truly depends 

on that many scales! For example: if the difficulty arises because the true slow time 

dependence19 is on something like (say) 
1+�2 t and not �t, then this “lots of scales” approach 

will just complicate things for no real gain at all. For an expansion to be useful, it has to 

zero into the real behavior of the solution. The aim of doing an asymptotic expansion should 

be to learn something useful about the solution, not to produce a massive amount of algebra 

(even if this is, sometimes, an unfortunate byproduct, it is not the aim). In particular, 

producing an “approximation” that fools us into believing that the solution depends on very 

many different time scales (when in fact it does not), is exactly opposite to this objective. 

19Notice that the van der Pol equation is exactly an example of this type. 
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A Appendix. 

A.1 Some details regarding section 1.1. 

Generally, asymptotic expansions — like the ones in these notes — require at each level 

the solution of a linear equation with some forcing made up from the prior terms. The 

solution of this linear equation is then required to satisfy some condition (periodicity in the 

examples here) and this imposes restrictions on the forcing terms. These restrictions are 

then used to determine free parameters, slow time evolutions, etc. 

When solving the linear equations in the expansion, it is very important to include in the 

solution ALL the free parameters consistent with the conditions imposed on the solution. 

This is because parameters that are “arbitrary” at some level, may later be needed to satisfy 

the restrictions at a higher order.20 Failure to include a particular parameter — which boils 

down to setting it to some arbitrary fixed value — will typically cause trouble at higher 

order, when a restriction on a forcing term will be found impossible to satisfy. 

On the other hand, practical considerations dictate that we carry as few free parameters 

in a calculation as feasible. Thus, one must always look at the equations involved and ask 

if there is some argument that would allow for the elimination of a parameter — but never 

must one eliminate a parameter without a good reason.21 

Consider now equation (1.1) — or (1.5). This equation is invariant under time trans

lation: if x = X(t) is a solution, then so it is x = X(t − t0). Thus, we can always pick the 

origin of the time coordinate to simplify the solution and eliminate parameters. 

For example: The general solution of (1.6) is: a cos(T − T0), where a and T0 are constants. 

But the invariance under time translation shows that we can set T0 = 0. 

Furthermore: At the level of (1.9) we know that in fact a is arbitrary. Then, since A and 

B in (1.9) amount to making small O(�) changes to a and T0 at the O(1) level — thus they 

are not true “new” free parameters — we can again set A = B = 0, as in (1.10), without 

any fear. 

20For example, in section 1.2, the amplitude a in (1.16) is eventually set to a = 2 in (1.18). 
21Conversely: if an expansion fails at some level, one should always check to see if somehow an important 

degree of freedom (some parameter) was ignored! 
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In fact, the same argument shows that we can conclude: 

At any level O(�n) in the expansion, for n > 1, we can 
(A.1) 

take xn in (1.3) with NO cos T or sin T components. 

A.2 More details regarding section 1.1. 

It is clear that, in the expansion of section 1.1, the O(�n) equations — for n > 1 — have the 

form 
n

x�� + xn = Pn(x0, . . . , xn−1) − 
� 

α�x
��
n−� , (A.2)n 

�=1 

where Pn is a cubic polynomial and the α�’s are constants defined by ω2 = 
�∞ α��

� . Thus �=0 

α0 = 1, α1 = 2ω1, α2 = 2ω2 + ω2 
1 , α3 = 2ω3 + 2ω1ω2, . . . . In general we can see that 

αn = 2ωn + fn(ω1, . . . , ωn−1), where fn is a quadratic polynomial. 

Because x0 is even, the forcing on the right hand side of (1.8) is also even. Then (1.10) 

gives x1 even. The same type of argument shows then that x2 is also even. More generally, 

one can show using (A.1) that all the xn’s are even. 

Now, the condition on (A.2) to get xn periodic in T is that the right hand side should 

not have any forcing proportional to either sin T or cos T . But the right hand side is even, 

thus there is NO sin T forcing ever. On the other hand, the coefficient of the cos T forcing 

has the form: 2aωn + Gn(a, ω1, . . . , ωn−1), where Gn is some polynomial function. Thus, one 

can always choose ωn so as to make the coefficient of cos T vanish. We have thus 

shown that 

The expansion in equation (1.3) works up to any order. (A.3) 

A.3 Some details regarding section 1.2. 

Equation (1.14) is invariant under time translation. Thus, just as we did in appendix A.1, 

we have a phase to play with and can use to eliminate parameters. 

We used this fact in (1.16) to eliminate the sine component in x0(T ). But now a is no 

longer a free parameter in the solution, as equation (1.18) shows that a = 2. Thus, in order 

to eliminate spurious parameters in x1(T ) (from the two – A and B – that appear in (1.18)), 

we only have a phase to play with. 
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Since 2 cos(T − 1 �B) = 2 cos T + �B sin T + . . ., it follows that a small phase change can be 
2 

used to eliminate B in x1(T ) as given in (1.18). But A cannot and should not be eliminated 

from the formula. In fact, at O(�2) the solvability requirement on the equations (periodicity 

of x2(T )) will determine A in the same fashion that a = 2 followed from the O(�) equation. 

At this level it will be possible to argue that no term in sin T is needed in x2(T ), but a 

term α cos T must be kept (with α determined at O(�3)). Clearly the same pattern will be 

repeated over and over. In this fashion the expansion can be continued to any desired 

order. 


