
�

18.385j/2.036j MIT 

Hopf Bifurcations.


Department of Mathematics 

Massachusetts Institute of Technology 

Cambridge, Massachusetts MA 02139 

Abstract 

In two dimensions a Hopf bifurcation occurs as a Spiral Point switches from stable 

to unstable (or vice versa) and a periodic solution appears. There are, however, more 

details to the story than this: The fact that a critical point switches from stable 

to unstable spiral (or vice versa) alone does not guarantee that a periodic 

solution will arise,1 though one almost always does. Here we will explore these 

questions in some detail, using the method of multiple scales to find precise conditions 

for a limit cycle to occur and to calculate its size. We will use a second order scalar 

equation to illustrate the situation, but the results and methods are quite general and 

easy to generalize to any number of dimensions and general dynamical systems. 

1Extra conditions have to be satisfied. For example, in the damped pendulum equation: x+µẋ+sin x = 0, ¨

there are no periodic solutions for µ = 0 ! 

1 
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1 Hopf bifurcation for second order scalar equations. 

1.1 Reduction of general phase plane case to second order scalar. 

We will consider here equations of the form 

ẍ + h( ̇x, x, µ) = 0 , (1.1) 

where h is a smooth and µ is a parameter. 

Note 1 There is not much loss of generality in studying an equation like (1.1), as 

opposed to a phase plane general system. For let: 

ẋ = f(x, y, µ) and ẏ = g(x, y, µ) . (1.2) 

Then we have 

ẍ = fxẋ + fy ẏ = fxf + fy g = F (x, y, µ) . (1.3) 

Now, from ẋ = f(x, y, µ) we can, at least in principle,2 write 

y = G( ̇x, x, µ) . (1.4) 

Substituting then (1.4) into (1.3) we get an equation of the form (1.1).3 

1.2 Equilibrium solution and linearization. 

Consider now an equilibrium solution4 for (1.1), that is: 

x = X(µ) such that h(0, X, µ) = 0 , (1.5) 

2We can do this in a neighborhood of any point (x∗, y∗) (say,a critical point) such that fy (x∗, y∗, µ) = 0, 

as follows from the Implicit Function theorem. If fy = 0, but gx = 0, then the same ideas yield an equation 

of the form ÿ + � y, y, µ) = 0 for some �h( ̇ h. The approach will fail only if both fy = gx = 0. But, for a 

critical point this last situation implies that the eigenvalues are fx and gy , that is: both real ! Since we are 

interested in studying the behavior of phase plane systems near a non–degenerate critical point switching 

from stable to unstable spiral behavior, this cannot happen. 
3Vice versa, if we have an equation of the form (1.1), then defining y by y = G( ̇x, x, µ), for any G such 

that the equation can be solved to yield ẋ = f(x, y, µ) (for example: G = ẋ), then ẏ = Gẋx + Gxẋ = g(x, y)¨

¨upon replacing ẋ = f and x = −h. 
4i.e.: a critical point. 
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so that x ≡ X is a solution for any fixed µ. There is no loss of generality in assuming 

X(µ) ≡ 0 for all values of µ ,	 (1.6) 

since we can always change variables as follows: = X(µ) + xnew.xold 

The linearized equation near the equilibrium solution x ≡ 0 (that is, the equation for x 

infinitesimal) is now: 

ẍ− 2αẋ + βx = 0 ,	 (1.7) 

α = α(µ) = − 1 hẋ(0, 0, µ) β = β(µ) = hx(0, 0, µ) .
2 

The critical point is a spiral point if β > α2 . The eigenvalues and linearized solution 

are then 
ω	 (1.8)λ = α± i�

(where �ω = 
√

β − α2) and 

αt x = ae cos ( �ω(t− t0)) ,	 (1.9) 

where a and t0 are constants. 

1.3	 Assumptions on the linear eigenvalues needed for a Hopf bi

furcation. 

Assume now: At µ = 0 the critical point changes from a stable to an unstable spiral 

point (if the change occurs for some other µ = µc, one can always redefine µold = µc +µnew). 

Thus 

where and 

α < 0 for µ < 0 and α > 0 for µ > 0, with β > 0 for µ small. 

In fact, assume: 

I. h is smooth. • 
d 

⎫
⎪

⎭
⎬
⎪ (1.10)5 • II. α(0) = 0, β(0) > 0 and α(0) > 0 . 

dµ 

We point out that, in addition, there are some restrictions on the behavior of 

the nonlinear terms near the critical point that are needed for a Hopf bifurcation 

to occur. See equation (1.22). 

5This last is known as the Transversality condition. It guarantees that the eigenvalues cross the imaginary 

axis as µ varies. 
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1.4 Weakly Nonlinear things and expansion of the equation near 

equilibrium. 

Our objective is to study what happens near the critical point, for µ small. Since for µ = 0 the 

critical point is a linear center, the nonlinear terms will be important in this study. Since 

we will be considering the region near the critical point, the nonlinearity will be weak. 

Thus we will use the methods introduced in the Weakly Nonlinear Things notes. 

For x, ẋ, and µ small we can expand h in (1.1). This yields 

1¨ 2 Aẋ2 + B ˙x + ω0
2x + 

� 
1 xx + 2 Cx2

� 
+ 

2 (1.11)+ 1 
�
Dẋ3 + 3Eẋ x + 3F ˙2 xx + Gx3

� 

6 

− 2p2 ẋµ + Ωxµ + O(�4, �2µ, �µ2) = 0 , 

where we have used that h(0, 0, µ) ≡ 0 and α(0) = 0. In this equation we have: 

∂ 
A. ω2 = h(0, 0, 0) = β(0) > 0, with ω0 > 0,0 ∂x 

B. A = h(0, 0, 0), B = h(0, 0, 0) , . . ., 
∂2 ∂2 

∂ẋ2 ∂ ẋ∂x


1 ∂2 d

C. p2 = h(0, 0, 0) = α(0) > 0, with p > 0,− 

2 ∂ ẋ∂µ dµ 

∂2 d 
D. Ω = h(0, 0, 0) = β(0),

∂x∂µ dµ 

E. � is a measure of the size of (x, ẋ). Further: both � and µ are small. 

1.5 Explanation of the idea behind the calculation. 

We now want to study the solutions of (1.11). The idea is, again: for � and µ small the 

x + ω2solutions are going to be dominated by the center in the linearized equation ¨ 0 x = 0, 

with a slow drift in the amplitude and small changes to the period6 caused by the higher 

order terms. Thus we will use an approximation for the solution like the ones in section 2.1 

of the Weakly Nonlinear Things notes. 
6We will not model these period changes here. See section 2.3 of the Weakly Nonlinear Things notes for 

how to do so. 
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1.6 Calculation of the limit cycle size. 

An important point to be answered is: What is epsilon? (1.12) 

This is a parameter that does not appear in (1.1) or, equivalently, (1.11). In fact, the only 

parameter in the equation is µ (assumed small as we are close to the bifurcation point µ = 0). 

Thus: 
� must be related to µ. (1.13) 

In fact, � will be a measure of the size of the limit cycle, which is a property of the


equation (and thus a function of µ and not arbitrary all).


However:
 We do not know � a priori! How do we go about determining it? 

The idea is: If we choose � “too small” in our scaling of (x, ẋ), then we will be looking 

“too close” to the critical point and thus will find only spirallike behavior, with no limit 

cycle at all. Thus, we must choose � just large enough so that the terms involving 

µ in (1.11) (specifically 2p2µẋ, which is the leading order term in producing the sta

ble/unstable spiral behavior) are “balanced” by the nonlinearity in such a fashion that 

a limit cycle is allowed. In the context of Two–Timing this means we want µ to “kick 

in” the damping/amplification term 2p2µẋ at “just the right level” in the sequence of 

solvability conditions the method produces. Thus, going back to (1.11), we see that7 

x + ω2 •	 The linear leading order terms ¨ 0 x appear at O(�). 

The first nonlinear terms (quadratic) appear at O(�2).• 
1 

However: Quadratic terms produce no resonances, since sin2 θ = (1 − cos 2θ) and 
2 

there are no sine or cosine terms. The same applies to cos2 θ and to 

sin θ cos θ. 

•	 Thus, the first resonances will occur when the cubic terms in x play a role ⇒ we must 

have the balance 
O(x 3) = O(µẋ) ,	 (1.14) 

⇒ µ = O(�2). 

7This is a crucial argument that must be well understood. Else things look like a bunch of miracles! 
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1.7 The Two Timing expansion up to O(�3). 

We are now ready to start. The expansion to use in (1.11) is 

x = �x1(τ, T ) + �2 x2(τ, T ) + �3 x3(τ, T ) + . . . , (1.15) 

where 0 < � � 1, 2π–periodicity in T is required, T = ω0t, ω0 is as in (1.11)8 , τ is a slow 

time variable and � is related to µ by µ = ν�2 , where ν = ±1 (which ν we take depends 

on which “side” of µ = 0 we want to investigate). 

What exactly is τ? Well, we need τ to resolve resonances, which will not occur until the cubic 

terms kick in into the expansion ⇒ τ = �2t. (This is exactly the same argument used to 

get (1.14)). 

Then, with � = ∂ 
∂T , (1.11) becomes: 

ω2 
0 x
�� + ω2 

0 x + 
� 

1 
2 Aω2 

0 (x
�)2 + Bω0xx� + 1 

2 Cx2
� 

+ 

1 
6 {Dω3 

0 (x
�)3 + 3Eω2 

0 (x
�)2x + 3Fω0x

�x2 + Gx3} + (1.16) 

2�2ω0x
�
τ − 2�2νp2ω0x

� + �2νΩx + O(�4) = 0 . 

The rest is now a computational nightmare, but it is fairly straightforward. Without 

getting into any of the messy algebra, this is what will happen: 

At O(�) ω2
1 + x1} = 0 . Thus0 {x��


x1 = a1(τ)e iT
 + c.c. (1.17) 

for some complex valued function a1(τ). We use complex notation, as in the Weakly Non

linear Things notes. 

At O(�2) 2 + x2} + {quadratic terms in x1 and x�ω0
2 {x�� � �� 1}� 

= 0 . (1.18) 

From the first bracket in (1.16), the quadratic terms here have the form: 
2C1a1e i2T 

��� 2
��� + C1 

∗(a∗ e−2iT+ C2 a1 1)
2 , 

where C1 and C2 are constants that can be computed in terms of ω0, A, B and C. 

Since the solution and equation are real valued, C2 is real. Here, as usual, ∗ indicates the 

complex conjugate. 
8Same as the linear (at µ = 0) frequency. No attempt is made in this expansion to include higher order 

nonlinear corrections to the frequency. 
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No resonances occur and we have 

1 2 2
���x2 = 

�� 

a2(τ)e iT + ω−2C1a1e i2T 
� 

+ c.c. 
� 

− ω−2C2 

��� . (1.19)
3 0	 0 a1 

At O(�3) ω2
3 + x3) + 2ω0x1

�
τ − 2νp 2ω0x1

� + νΩx1 + CNLT = 0 , (1.20) 

where CNLT stands for Cubic Non	 Linear Terms, involving products of the form x2x1, 

2 3 

0 (x
��

x2
� x1, x2x1

� , x2
� x1
� , (x1

� )3 , (x1
� )2x1, x1

� x and x1. These will produce a term of the form1


1a
∗ iT
da2
1e + c.c. plus other terms whose T dependencies are: 1, e±2iT and e±3iT , none of 

which is resonant (forces a non periodic response in x3). Here 

d is a constant that can be computed in terms of ω0, A, B, C, D, E, F and G . (1.21) 

This is a big and messy calculation, but it involves only sweat. In general, of course, 

Im(d) = 0. The case Im(d) = 0 is very particular, as it requires h in equation (1.1)to be just 

right, so that the particular combination of its derivatives at x = 0, ẋ = 0 and µ = 0 that 

yields Im(d) just happens to vanish. Thus 

Assume a nondegenerate case: Im(d) = 0 . (1.22) 

For equation (1.20) to have solutions x3 periodic in T , the forcing terms proportional to e±iT 

must vanish. This leads to the equation: 

d 
2ω0i a1 − 2νp 2ω0ia1 + νΩa1 + d 

��� 2
��� a1 = 0. (1.23)a1dτ 

Then write 

a1 = ρeiθ , with ρ and θ real , ρ > 0 . 

This yields 
d 
dτ 

θ = 
1 
2 
νω−1 

0 Ω + 
1 
2 
ω−1 

0 Re(d)ρ3 (1.24) 

and 
d 

ρ = νp 2 )ρ , (1.25)(1 − νqρ2

dτ 

1 
where q = ω−1 p−2Im(d).

2 0 
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Equation(1.24) provides a correction to the phase of x1, since x1 = 2ρ cos(T + θ). The 

first term on the right of (1.24) corresponds to the changes in the linear part of the phase 

due to µ = 0, away from the phase T = ω0t at µ = 0. The second term accounts for the 

nonlinear effects. 

The second equation (1.25) above is more interesting. First of all, it reconfirms that for 

µ < 0 (that is, ν = −1) the critical point (ρ = 0) is a stable spiral, and that for µ > 0 (that 

is, ν = 1) it is an unstable spiral. Further 

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

If Im(d) > 0. Then a stable limit cycle exists for 

µ > 0 (i.e. ν = 1) with ρ = 
�

2ω0p2(Im(d))−1 . 

Supercritical (Soft) Hopf Bifurcation. 

If Im(d) < 0. Then an unstable limit cycle exists for 

(1.26)


µ < 0 (i.e. ν = −1) with ρ = −2ω 2(Im(d))−1 
0p .


⎭
Subcritical (Hard) Hopf Bifurcation. 

1 
Notice that ρ here is equal to the radius of the limit cycle.

2� 

1.7.1 Remark on the situation at the critical bifurcation value. 

Notice that, for µ = 0 (critical value of the bifurcation parameter)9 we can do a two timing 

analysis as above to verify what the nonlinear terms do to the center.10 The calculations are 

exactly as the ones leading to equations (1.23)–(1.25), except that ν = 0 and � is now a small 

parameter (unrelated to µ, as µ = 0 now) simply measuring the strength of the nonlinearity 
1 

near the critical point. Then we get for ρ = radius of orbit around the critical point 
2� 

d 1 3ρ = − 
2 
ω−1Im(d)ρ . (1.27)

dτ 0 

From this the behavior near the critical point follows. 

9Then the critical point is a center in the linearized regime. 
10This is the way one would normally go about deciding if a linear center is actually a spiral point and 

what stability it has. 
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• Im(d) > 0 Soft bifurcation Nonlinear terms stabilize. ⇐⇒ ⇐⇒ 

For µ = 0 critical point is a stable spiral. 
Clearly 

⎧
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 
• Im(d) < 0 Hard bifurcation Nonlinear terms destabilize. ⇐⇒ ⇐⇒ 

For µ = 0 critical point is an unstable stable spiral. 

1.7.2 Remark on higher orders and two timing validity limits. 

As pointed out in the Weakly Nonlinear Things notes, Two Timing is generally valid for some 

“limited” range in time, here probably τ � �−1 . This is because we have no mechanism| | 
for incorporating the higher order corrections to the period the nonlinearity produces. If 

we are only interested in calculating the limit cycle in a Hopf bifurcation (not it’s stability 

characteristics), we can always do so using the Poincaré–Lindsteadt Method. In particular, 

then we can get the period to as high an order as wanted. 

1.7.3 Remark on the problem when the nonlinearity is degenerate. 

What about the degenerate case Im(d) = 0 ?


In this case there may be a limit cycle, or there may not be one. To decide the question 

one must look at the effects of nonlinearities higher than cubic (going beyond O(�3) in the 

expansion) and see if they stabilize or destabilize. If a limit cycle exists, then its size will 

not be given by 
�
| µ| , but something else entirely different (given by the appropriate balance 

between nonlinearity and the linear damping/amplification produced by α = 0 when µ = 0 

in equation (1.7)). The details of the calculation needed in a case like this can be quite hairy. 

One must use methods like the ones in Section 2.3 of the Weakly Nonlinear Things notes 

because: even though the nonlinearity may require a high order before it decides the issue of 

stability, modifications to the frequency of oscillation will occur at lower orders.11 We will 

not get into this sort of stuff here. 

11Note that Re(d) = 0 in (1.24) produces such a change, even if Im(d) = 0 and there are no nonlinear 

effects in (1.25). 


