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There are many examples of wave equations in the physical sciences, characterized 
by oscillating solutions that propagate through space and time while, in lossless media, 
conserving energy. Examples include the scalar wave equation (e.g. pressure waves 
in a gas), Maxwell’s equations (electromagnetism), Schrödinger’s equation (quantum 
mechanics), elastic vibrations, and so on. From an algebraic perspective, all of these 
share certain common features. They can all be written abstractly in a form 

∂w 
= D̂w + s (1)

∂t 

where w(x, t) is some vector-field wave function characterizing the solutions (e.g. a 
6-component electric+magnetic field in electromagnetism), D̂ is some linear operator 
(using the “hat” notation from quantum mechanics to denote linear operators), neglect
ing nonlinear effects, and s(x, t) is some source term. The key property of D̂ for a wave 
equation is that it is anti-Hermitian, as opposed to a parabolic equation (e.g. a diffusion 
equation) where D̂ is Hermitian and negative semi-definite. From this anti-Hermitian 
property follow familiar features of wave equations, such as oscillating/propagating 
solutions and conservation of energy. In many cases, we will set s = 0 and focus on 
the source-free behavior. 

In the following note, we first derive some general properties of eq. (1) from the 
characteristics of D̂, and then give examples of physical wave equations that can be 
written in this form and have these characteristics. 
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1 General properties of wave equations 

In lossless media, D̂ turns out to be an anti-Hermitian operator under some inner 
product (w, w�) between any two fields w(x, t) and w�(x, t) at a given time t. This 
means that (w, D̂w�) = −(D̂w, w�) for any w, w�: D̂ flips sign when it moves from 
one side to the other of an inner product. This is proven below for several common 
wave equations. Formally, D̂† = −D̂, where † is the adjoint: for any operator Â, 
(w, Âw�) = ( Â†w, w�) by definition of Â†. 

The anti-Hermitian property of D̂ immediately leads to many useful consequences, 
and in particular the features that make the equation “wave-like:” 

1.1 Harmonic modes and Hermitian eigenproblems 
First, we can write down an eigen-equation for the harmonic-mode solutions w(x, t) = 
W(x)e−iωt, assuming D̂ is linear and time-invariant. Substituting W(x)e−iωt into 
eq. (1) for the source-free s = 0 case, we obtain: 

ωW = iD̂W, (2) 

which is a Hermitian eigenproblem: if D̂ is anti-Hermitian, then iD̂ is Hermitian. It 
then follows that the eigenvalues ω are real and that solutions W can be chosen orthog
onal. Notice that the real eigenvalues ω corresponds directly to our assumption that the 
medium has no dissipation (or gain)—if ω were complex, waves would exponentially 
decay (or grow), but instead they oscillate forever in time. For any reasonable physical 
problem, it also follows that the eigenmodes are a complete basis for all w, so they 
completely characterize all solutions.1 

1.2 Planewave solutions 
Second, the most familar feature of wave equations is the existence of not just oscilla
tion in time (real ω), but oscillation in space as well. In particular, with a wave equation 

1Technically, we require D̂ or its inverse to be compact, which is true as long as we have a reasonable 
decaying Green’s function [1]. This is almost always true for physical wave problems, but functional analysts 
love to come up with pathological exceptions to this rule. 
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one immediately thinks of sinusoidal planewave solutions ∼ ei(k·x−ωt) for some real 
wave vector k. These solutions arise in any equation of the anti-Hermitian form (1) 
that additionally has translational symmetry (the medium is homogeneous). 

Intuitively, translational symmetry means that D̂ is the same at different points in 
space. Formally, we can make this precise by defining a translation operator T̂d that 
takes a function w(x, t) and translates it in space by a displacement d: 

T̂dw(x, t) = w(x − d, t). 

When we say that D̂ has translational symmetry, we mean that D̂ is the same if we 
first translate by some d, then operate D̂, then translate back: D̂ = T̂d

−1D̂T̂d, or 
equivalently D̂ commutes with T̂d: 

D̂T̂d = T̂dD̂

for all displacements d. When one has commuting operators, however, one can choose 
simultaneous eigenvectors of both operators [2] . That means that the eigenvectors 
Ŵ (x) of iD̂ (and D̂) can be written in the form of eigenfunctions of T̂d, which are 
exponential functions eik·x for some k: 

w(x, t) = W(x)e−iωt = W0e 
i(k·x−ωt) (3) 

for some constant vector W0 (depending on k and ω) determined by D̂. The wave 
vector k must be real if we require our states to be bounded for all x (not exponentially 
growing in any direction).2 For each k, there will be a discrete set of eigenfrequencies 
ωn(k), called the dispersion relation or the band structure of the medium. 

Let us also mention two generalizations, both of which follow from the broader 
viewpoint of group representation theory [3, 4]. First, the existence of planewave solu
tions can be thought of as a consequence of group theory. The symmetry operators that 
commute with D̂ form the symmetry group (or space group) of the problem (where the 
group operation is simply composition), and it can be shown that the eigenfunctions of
D̂ can be chosen to transform as irreducible representations of the symmetry group. 
For the translation group {T̂d | d ∈ R3}, the irreducible representations are the expo
nential functions {e−ik·d}, but more complicated and interesting representations arise 
when one includes rotations and other symmetries. Second, in order to get wave solu
tions, one need not require D̂ to commute with T̂d for all d. It is sufficient to require 
commutation for d = R = n1R1 + n2R2 + n3R3 on a discrete periodic lattice R 
with primitive lattice vectors R� (and any n� ∈ Z): D̂ is periodic, with discrete trans
lational symmetry. In this case, one obtains the Bloch-Floquet theorem (most famous 
in solid-state physics): the eigenfunctions W can be chosen in the form of a plane 

2Complex k solutions are called evanescent waves, and can appear if D̂ is only translationally invariant 
over a finite region (e.g. if the medium is piecewise-constant). Even the real k solutions are a bit weird 
because they are not normalizable: �eik·x�2 is not finite! By admitting such solutions, we are technically 
employing a “rigged” Hilbert space, which requires a bit of care but is not a major problem. Alternatively, 
we can put the whole system in a finite L × L × L box with periodic boundary conditions, in which case 
the components of k are restricted to discrete multiples of 2π/L, and take the limit L → ∞ at the end of 
the day. 
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wave multiplied by a periodic Bloch envelope. More explicitly, one has Bloch wave 
solutions: 

w(x, t) = Wk,n(x)e i[k·x−ωn(k)t], (4) 

where Wk,n(x) is a periodic function (invariant under translation by any R in the 
lattice) satisfying the Hermitian eigenproblem: 

ωn = ie−ik· Deik·(k)Wk,n 
x ˆ xWk,n. 

The planewave case (3) [continuous translational symmetry] is simply the special case 
of the Bloch wave (4) [discrete translational symmetry] in the limit where the lattice 
vectors become infinitesimal (|R�| → 0). 

1.3 Time evolution and conservation of energy 
Third, we obtain conservation of energy in the absence of sources (s = 0), where we 
define the “energy” of a field w as its norm �w�2 = (w, w). The proof that �w�2 

is conserved for s = 0 (sources would add or remove energy) is elementary, given an 
anti-Hermitian D̂: 

∂∂�w�2 

= (w, w) = ( ẇ, w)+(w, ẇ) = ( D̂w, w)+(w, D̂w) = ( D̂w, w)−(D̂w, w) = 0. 
∂t ∂t 

This works even if D̂ is time-dependent, which may seem surprising: if you take a wave 
equation and “shake it” by varying D̂ rapidly in time, you might think you could add 
energy to the system. But no: a time-varying D̂ can alter the frequency of the solution 
(which is not conserved in a time-varying problem), but not the energy. However, this 
is not the whole story, because D̂ is not the only possible source of time-dependent 
behavior: the definition of our inner product (w, w�) can depend on t as well. In fact, 
we will see that this is often possible for physical systems such as Maxwell’s equations 
or even the scalar wave equation. In particular, our inner product is often of the form 
(w, w�) = (w, P̂w�)0, where (·, )0 denotes an inner product independent of time and ·
P̂ is some positive-definite Hermitian operator depending on the wave medium, which 
may depend on time. In this case, when taking the time derivative of �w�2, we also get 
a term (w, ∂∂t 

P̂ w)0, which is not in general zero. So, a time-varying medium can break 
conservation of energy if the time variation changes the norm. 

If D̂ is time-independent, we can easily write down the explicit solution of the 
initial-value problem. In this case eq. (1) for s = 0 is solved formally by the operator 
exponential: 

Dtw(x, t) = e 
ˆ w(x, 0) = Ûtw(x, 0) 

ˆfor an initial condition w(x, 0) and a time-evolution operator Ût = eDt. Because D̂
is anti-Hermitian, it flips sign when it switches sides in an inner product, and hence Ût 

Dt to ˆ Dt Û−1 ˆchanges from Ût = e ˆ U† = e− ˆ = t = U−t. This means that Ût is a unitaryt 
operator, and hence 

Ûtw 
2 

= ( Ûtw, Ûtw) = ( Û−1Ûtw, w) = �w� 2 
t . 

Thus, �w�2 does not change as the field evolves in time: energy is conserved! 
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1.4 Off-diagonal block form and reduced-rank eigenproblems 
There is another variant on the eigenequation (2) ωW = iD̂W: if we operate iD̂ again 
on both sides, we get ω2W = −D̂2W, where −D̂2 is automatically Hermitian and 
positive semi-definite. Why would we want to do this? The main reason is that D̂ often 
(not always) has a special block form: 

ˆ
� 

D̂2 
� 

D = ˆ , (5)
D1 

for some operators D̂1 and D̂2, in which case D̂2 is block diagonal: 

D̂2 = 
D̂2 

0 
D̂1 

D̂1 

0 
D̂2 

. 

This means that the ω2W = −D̂2W problem breaks into two lower-dimensional 
eigenproblems with operators −D̂1D̂2 and −D̂2D̂1. In particular, let us break our 
solution w into two pieces: � � 

w1w = w2 

where D̂k operates on wk, and suppose that our inner product also divides additively 
between these two pieces: 

(w, w�) = (w1, w1
� )1 + (w2, w2

� )2 

in terms of some lower-dimensional inner products (·, )1 and (·, )2. In this case, from · ·
the fact that −D̂2 is Hermitian positive semi-definite under ( ), it immediately fol·, ·
lows that −D̂2D̂1 is Hermitian positive semi-definite under (·, )1 and −D̂1D̂2 is Her·
mitian positive semi-definite under (·, )2. (To prove this, just write down the Hermitian ·
positive-semidefinite property of −D̂2 for wk = 0 with k = 1, 2.) We therefore have 
obtained two smaller Hermitian positive semi-definite eigenproblems 

−D̂2D̂1W1 = ω2W1, (6) 

−D̂1D̂2W2 = ω2W2, (7) 

again with real ω solutions and orthogonality relations on the Wk.3 

Moreover, each of these has to give all of the eigenfrequencies ω. Every eigen
function of D̂ must obviously be an eigenfunction of D̂2, and the converse is also true: 
given an eigenvector W1 of eq. (6) with eigenvalue ω2, to get an eigenvector W of D̂
with eigenvalue ω we just set 

W2 = 
i
D̂1W1. (8)

ω 
3The fact that they are positive semi-definite (and often positive-definite, since it is typically possible to 

exclude the ω = 0 solutions) is especially advantageous for numerical methods. Some of the best iterative 
eigensolver methods are restricted to positive-definite Hermitian problems, for example [5]. 
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This formula looks a bit suspicious in the case where ω = 0: the static (non-oscillatory) 
solutions. For these (usually less-interesting) static solutions, the W1 and W2 eigen
problems decouple from one another and we can just set W2 = 0 in W. Similarly, if 
we solve for an eigenvector W2 of eq. (7), we can construct W via W1 = iD̂2W2/ω 
for ω = 0 or set W1 = 0 for ω = 0. 

We lost the sign of ω by squaring it (which is precisely why we can solve an eigen
problem of “half” the size), but this doesn’t matter: ω = ±

√
ω2 both yield eigenso

lutions W by (8). Therefore, in problems of the block form (5), the eigenvalues ω 
always come in positive/negative pairs. In the common case where D̂1 and D̂2 are 
purely real, the eigenvectors W1 (or W2) can also be chosen real, we can therefore 
obtain real solutions w by adding the +ω and −ω eigenfunctions (which are complex 
conjugates). 

1.5 Harmonic sources and reciprocity 
The most important kind of source s is a harmonic source 

s(x, t) = S(x)e−iωt . 

In this case, we are looking for the steady-state response w = W(x)e−iωt. Substitut
ing these into eq. (1) problem of solving for W(x) is now in the form of an ordinary 
linear equation, rather than an eigenproblem: 

iD̂ − ω W = ÔW = −iS. 

Notice that the operator Ô = iD̂ − ω on the left-hand side is Hermitian. Suppose 
that we solve the equation twice, with sources S(1) and S(2) to get solutions W(1) and 
W(2). Then, the Hermitian property means that we obtain the following identity for 
the inner product: 

(W(1), S(2)) = (W(1), i ÔW(2)) = (−iÔW(1), W(2)) = −(S(1), W(2)). 

This is almost the same as a very well known property of wave equations, known as 
reciprocity. The reason it is only almost the same is that reciprocity relations normally 
use an unconjugated “inner product,” assuming Ô is not only Hermitian but real (or 
complex-symmetric). This gets rid of the minus sign on the right-hand side, for one 
thing. It also only requires iD̂ to be complex-symmetric (Hermitian under an uncon
jugated inner product) rather than Hermitian, which allows reciprocity to apply even 
to systems with dissipation. (It also simplifies some technical difficulties regarding the 
boundary conditions at infinity.) See e.g. Ref. [6]. 

What if Ô is not real or complex-symmetric, e.g. in the common case where D̂ is 
real-antisymmetric? Can we still have reciprocity with an unconjugated inner product? 
In this case, we can often instead express reciprocity using the block form (5), since in 
that case the operator is real-symmetric if D̂ is real, as described below. 

Just as for the eigenproblem, it is common when we have the block form (5) of D̂ to 
break the problem into a smaller linear equation for W1 or W2, similarly subdividing 
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S = (S1; S2). For example, the equation for W1 is 

(−D̂2D̂1 − ω2)W1 = −iωS1 + D̂2S2. (9) 

For example, in the case of the scalar wave equation below, this equation becomes a 
inhomogeneous scalar Helmholtz equation. Again, notice that the operator −D̂2D̂1 −
ω2 on the left-hand side is Hermitian. In fact, it is often purely real-symmetric (or 
complex-symmetric in a system with dissipation), which allows us to derive recprocity 
using an unconjugated inner product as described above. 

2 The scalar wave equation 
There are many formulations of waves and wave equations in the physical sciences, but 
the prototypical example is the (source-free) scalar wave equation: 

1 ∂2u ü� · (a�u) = 
b ∂t2 

= 
b 

(10) 

where u(x, t) is the scalar wave amplitude and c = 
√
ab is the phase velocity of the 

wave for some parameters a(x) and b(x) of the (possibly inhomogeneous) medium.4 

This can be written in the form of eq. (1) by splitting into two first-order equations, in 
terms of u and a new vector variable v satisfying a�u = v̇ and b� · v = u̇: � � � � � � 

∂w 
= 

∂ u 
= 

b�· u 
= D̂w 

∂t ∂t v a� v 

for a 4 × 4 linear operator D̂ and a 4-component vector w = (u; v), in 3 spatial 
dimensions. 

Next, we need to show that D̂ is anti-Hermitian, for the case of lossless media 
where a and b are real and positive. To do this, we must first define an inner product 
(w, w�) by the integral over all space: � � � � �� 

(w, w�) = u∗ b−1 u� + v∗ a−1v� d3x, 

where ∗ denotes the complex conjugate (allowing complex w for generality). 
Now, in this inner product, it can easily be verified via integration by parts that: 

(u, D̂u�) = [u∗� · v� + v∗ · �u�] d3x, = · · · = −(D̂u, u�), 

which by definition means that D̂ is anti-Hermitian. All the other properties—conservation 
of energy, real eigenvalues, etcetera—then follow. 

Also, note that the −D̂
2 

eigenproblem in this case gives us more-convenient smaller 
eigenproblems, as noted earlier: −b�·(a�u) = ω2u, and−a�(b�·v) = ω2v. (These 
may not look Hermitian, but remember our inner product.) And in the harmonic-source 
case, we get an operator −D̂2D̂1−ω2 = −b�·a�−ω2 when solving for u via (9)—for 
the common case a = b = 1, this is the scalar Helmholtz operator −(�2 + ω2). 

4More generally, a may be a 3 × 3 tensor in an anisotropic medium. 
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3 Maxwell’s equations 
Maxwell’s equations, in terms of the electric field E, magnetic field H, dielectric per
mittivity ε and magnetic permeability µ, are: 

∂(µH)�× E = − 
∂t 

∂(εE) �× H = 
∂t 

+ J, 

where J is a current source; J = 0 in the source-free case. The other two Maxwell’s 
equations � · εE = 0 and � · µH = 0 express constraints on the fields (in the absence 
of free charge) that are preserved by the above two dynamical equations, and can thus 
be ignored for the purposes of this analysis (they are just constraints on the initial con
ditions). For simplicity, we restrict ourselves to the case where ε and µ do not depend 
on time: the materials may vary with position x, but they are not moving or chang
ing.5 ε and µ may also be 3 × 3 tensors rather than scalars, in an anisotropic medium, 
but we assume that they are Hermitian positive-definite in order to be a lossless and 
transparent medium. In this case, the equations can be written in the form of (1) via: � � � � � � � � 
∂w 

= 
∂ E 

= 1

1 
ε �× E 

+ 
−J/ε 

= D̂w + s,
∂t ∂t H − µ �× H 0 

where w here is a 6-component vector field. 
To show that this D̂ is anti-Hermitian, we must again define an inner product by an 

integral over space at a fixed time: 

1
(w, w�) = [E∗ (εE�) + H∗ (µH�)] d3x,

2 
· · 

which is precisely the classical electromagnetic energy in the E and H fields (for non-
dispersive materials) [7]! 

Given this inner product, the rest is easy, given a single vector identity: for any 
vector fields F and G, �· (F × G) = G · (�× � F) − F (�× G). This vector identity · � 
allows us to integrate �× by parts easily: F · (� × G) = G · (� × F) plus a 
surface term (from the divergence theorem) that goes to zero assuming �F� and �G� 
are < ∞. 

Now we can just plug in (w, D̂w�) and integrate by parts: 

(w, D̂w�) =
1
2 

[E∗ · (�× H�) − H∗ · (�× E�)] d3x 

= 
2
1 

[(�× E)∗ · H� − (�× H)∗ · E�] d3x = (−D̂w, w�). 

Thus, D̂ is Hermitian and conservation of energy, real ω, orthogonality, etcetera follow. 

5One can get very interesting physics by including the possibility of time-varying materials! 

8 



� 

� � 

Again, D̂ is in the block form (5), so the D̂2 eigenproblem simplifies into two 
separate Hermitian positive semi-definite eigenproblems for E and H: 

1 1 
ε 
�× ( 

µ 
�× E) = ω2E, (11) 

1 1 
µ 
�× ( 

ε 
�× H) = ω2H. (12) 

These convenient formulations are a more common way to write the electromagnetic 
eigenproblem [8] than (2). Again, they may not look very Hermitian because of the 
1/ε and 1/µ terms multiplying on the left, but don’t forget the ε and µ factors in 
our inner product, which makes these operators Hermitian.6 Therefore, for exam
ple, two different eigensolutions E1 and E2 are orthogonal under the inner product 
(E1, E2)E = E∗ (εE2) = 0. Bloch’s theorem (4) for this Hermitian eigenproblem 1 · 
in the case of periodic materials leads to photonic crystals [8]. 

Recall that something funny happens at ω = 0, where E and H decouple. In this 
case, there are infinitely many ω = 0 static-charge solutions with � · εE = 0 � and/or 

= 0. For ω = 0, � · εE = 0 and � · µH = 0 follow automatically from the � · µH � �
equations −iωεE = � × H and iωµH = � × E. (These divergence equations are 
just Gauss’ laws for the free electric and magnetic charge densities, respectively.) 

In the case with a current source J = 0� , we can solve for E via eq. (9), which here 
becomes: � �

1 1 
ε 
�× 

µ 
�×−ω2 E = iωJ/ε, 

or (multiplying both sides by ε) 

1 �× 
µ 
�×−ω2ε E = iωJ. 

The operator on the left side is Hermitian in lossless media, or complex-symmetric in 
most dissipative materials where ε and µ are complex scalars. This gives rise to the 
well-known Rayleigh-Carson and Lorentz reciprocity relations [9, 6]. 

4 The one-way scalar wave equation 
As a break from the complexity of Maxwell’s equations, let’s look at the source-free 
one-way scalar wave equation: 

∂u ∂u −c = ,
∂x ∂t 

6Alternatively, if we defined inner products without the ε and µ, we could write it as a generalized R 
Hermitian eigenproblem. For example, if we used the inner product (E, E�) = E∗ E�, we would · 
write the generalized Hermitian eigenproblem � × ( 

µ 
1 � × E) = ω2εE. This gives the same result: for 

generalized Hermitian eigenproblems ˆ Bu, the orthogonality relation is (u1, Bu2) = 0 for distinct Au = λ ˆ ˆ

eigenvectors u1 and u2. This formulation is often more convenient than having ε or µ factors “hidden” 
inside the inner product. 
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where c(x) > 0 is the phase velocity. This is a one-way wave equation because, for 
c = constant, the solutions are functions u(x, t) = f(x − ct) traveling in the +x 
direction only with speed c. 

∂This equation is already in our form (1), with D̂ = −c ∂x , which is obviously 
anti-Hermitian under the inner product 

∞ u∗u�
(u, u�) = dx, 

c−∞ 

via elementary integration by parts. Hence energy is conserved, we have real eigenval
ues, orthogonality, and all of that good stuff. We don’t have the block form (5), which 
is not surprising: we can hardly split this trivial equation into two simpler ones. 

5 The Schrödinger equation 
Perhaps the most famous equation in form (1) is the Schrödinger equation of quantum 
mechanics: � � 

∂ψ i �2


∂t 
= − 

� 
− 

2m 
�2 + V ψ,


for the wave function ψ(x, t) of a particle with mass m in a (real) potential V (x). 
Famous, not so much because Schrödinger is more well known than, say, Maxwell’s 
equations, but rather because the Schrödinger equation (unlike Maxwell) is commonly 
taught almost precisely in the abstract form (1) [2, 10], where the operator D̂ is given 
by � � 

ˆ i ˆ i �2 

D = − 
� 
H = − 

� 
− 

2m 
�2 + V 

for the Hamiltonian operator Ĥ . This is the equation where many students delve into 
abstract Hermitian operators and Hilbert spaces for the first time. � 

The fact that Ĥ is Hermitian under the inner product (ψ,ψ�) = ψ∗ψ�, and hence 
D̂ is anti-Hermitian, is well known (and easy to show via integration by parts). From 
this follow the familar properties of the Schrödinger equation. The eigenvalues ω are 
interpreted as the energies E = �ω, which are real (like any quantum observable), and 
the eigenstates ψ are orthogonal. Conservation of “energy” here means that |ψ|2 is a 
constant over time, and this is interpreted in quantum mechanics as the conservation of 
probability. 

Again, we don’t have a block form (5) for the Schrödinger problem, nor do we want 
it. In this case, the operator D̂ is not real, and we do distinguish positive and negative 
ω (which give very different energies E!). We want to stick with the full eigenproblem 
ˆ Hψ = Eψ, thank you very much. Bloch’s theorem (4) for Dψ = ωψ, or equivalently ˆ
this Hermitian eigenproblem in the case of a periodic potential V leads to the field of 
solid-state physics for crystalline materials [11, 12]. 
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6 Elastic vibrations in linear solids 
One of the more complicated wave equations is that of elastic (acoustic) waves in 
solid media, for which there are three kinds of vibrating waves: longitudinal (pres
sure/compression) waves and two orthogonal transverse (shear) waves. All of these 
solutions are characterized by the displacement vector u(x, t), which describes the 
displacement u of the point x in the solid at time t. 

In the linear regime, an isotropic elastic medium is characterized by its density ρ 
and the Lamé elastic constants µ and λ: µ is the shear modulus and λ = K − 2

3 µ, 
where K is the bulk modulus. All three of these quantities are functions of x for an 
inhomogeneous medium. The displacement u then satisfies the Lamé-Navier equation 
[13, 14]: 

∂2u � � �� 
ρ = �(λ� · u) + � · µ �u + (�u)T + f , (13)
∂t2 

where f(x, t) is a source term (an external force density). This notation requires a bit 
of explanation. By �u, we mean the rank-2 tensor (3 × 3 matrix) with (m,n)th entry 
∂um/∂xn (that is, its rows are the gradients of each component of u), and (�u)T is 
the transpose of this tensor. By the divergence �· of such a tensor, we mean the vector 
formed by taking the divergence of each column of the tensor (exactly like the usual 
rule for taking the dot product of a vector with a 3 × 3 matrix). 

Clearly, we must break eq. (13) into two first-order equations in order to cast it 
into our abstract form (1), but what variables should we choose? Here, we can be 
guided by the fact that we eventually want to obtain conservation of energy, so we can 
look at what determines the physical energy of a vibrating wave. The kinetic energy 
is obviously the integral of 2

1 ρ|v|2, where v is the velocity u̇, so v should be one of 
our variables. To get the potential energy, is convenient to first define the (symmetric) 
strain tensor ε [14]: 

1 � � 
ε = �u + (�u)T , (14)

2 
which should look familiar because 2ε appears in eq. (13). In terms of ε, the poten
tial energy density is then µ tr(ε†ε) + λ| tr ε|2/2, where † is the conjugate-transpose 
(adjoint) [14]. Note also that tr ε = � · u, by definition of ε. 

Therefore, we should define our wave field w as the 9-component w = (v; ε), with 
an inner product 

1 � � 
(w, w�) = ρv∗ v� + 2µ tr(ε†ε�) + λ(tr ε)∗(tr ε�) d3x,

2 
· 

so that �w�2 is the physical energy. Now, in terms of v and ε, our equations of motion 
must be: 

∂w ∂ 
� 

v 
� � ˆ � � 

v 
� � 

f/ρ 
� 

= = 
D2 + = D̂w + s,

∂t ∂t ε D̂1 ε 0 

with 
ε̇ = D̂1v =

1 � 
�v + (�v)T 

� 
, (15)

2 
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� � � 

� 

� 

� 

� 

v̇ = D̂2ε = 
1

[�(λ tr ε) + 2� · (µε)] . 
ρ 

Now, we can check that D̂ is anti-Hermitian (assuming lossless materials, i.e. real λ 
and µ). For compactness, we will use the Einstein index notation that repeated indices 
are summed, e.g. a b = anbn with an implicit sum over n since it is repeated, and let · 
∂k denote ∂x

∂ 
k 

. Then, plugging in the definitions above and integrating by parts: 

(w, D̂w�) = 
1 

ρv∗ (D̂2ε
�) + 2µ tr(ε†D̂1v�) + λ(tr ε)∗(tr D̂1v�) d3x

2 
· 

1 
= [v∗ (∂mλε

� + 2∂nµε
� ) + 2µε∗ ∂mv

� )∗(∂nv
� )] d3xm nn nm mn n + λ(εmm n2 

= 
−1 � 

(λ∂mvm)∗ 
ε� + (2µ∂nvm + (2∂mµεmn)∗ 

v� + (∂nλεmm)∗v�
� 
d3xnn )∗ 

εnm n n2 

= ( D̂w, w�). 

Note that we used the symmetry of ε to write 2 tr(ε†D̂1v�) = ε∗ 
n +ε

∗ ∂nv
� = mn∂mv

�
mn m 

2ε∗ ∂mvn
� .mn

We are done! After a bit of effort to define everything properly and prove the 
anti-Hermitian property of D̂, we can again immediately quote all of the useful general 
properties of wave equations: oscillating solutions, planewaves in homogeneous media, 
conservation of energy, and so on! 

6.1 Scalar pressure waves in a fluid or gas 
For a fluid or gas, the shear modulus µ is zero—there are no transverse waves—and 
λ is just the bulk modulus. In this case, we can reduce the problem to a scalar wave 
equation in terms of the pressure P = −λ� · u = − tr ε. We obtain precisely the 
scalar wave equation (10) if we set a = 1/ρ, b = λ, u = P , and v = −u̇ (the velocity, 
with a sign flip by the conventions defined in our scalar-wave section). The wave speed 
is c = λ/ρ. Our “energy” in the scalar wave equation is again interpreted as (twice) 
the physical energy: the integral of (twice) the potential energy P 2/λ and (twice) the 
kinetic energy ρ|v|2 . 

6.2 Eigenequations and constraints 
Again, we have the block form (5) of D̂, so again we can write an eigenproblem for ω2 

by solving for harmonic v or ε individually. Given a harmonic u = U(x)e−iωt, the 
equation for U just comes from the eigen-equation for v = −iωUe−iωt, which is just 
the same as plugging a harmonic u into our original equation (13): 

1 � � � ��� 
ω2U = − �(λ� · U) + � · µ �U + (�U)T ,

ρ 

which again is a Hermitian positive semi-definite eigenproblem thanks to the factor of 
ρ in our inner product (U, U�) = ρU∗ U�. (Alternatively, one obtains a generalized · 
Hermitian eigenproblem for an inner product without ρ.) Bloch’s theorem (4) for this 
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� 

Hermitian eigenproblem in the case of periodic materials leads to the study of phononic 
crystals [15]. 

We could also write the eigenequation in terms of ε, of course. Sometimes, ε is 
more convenient because of how boundary conditions are expressed in elastic problems 
[14]. However, in the case of ε we need to enforce the constraint 

�× (�× ε)T = 0, (16) 

which follows from the definition (14) of ε in terms of u. Note that the curl of a tensor, 
here, is defined as the curl of each column of the tensor, so �× (�× ε)T means that 
we take the curl of every row and column of ε. This is zero because ε is defined as the 
sum of a tensor whose rows are gradients and its transpose, and the curl of a gradient 
is zero. The same constraint also follows from eq. (15) for ω = 0� , which is part of the 
eigenequation, but ε is decoupled from eq. (15) for ω = 0 and in that case we need to 
impose (16) explicitly [14]. 

7 The scalar wave equation in space 
Now, let’s consider something a little different. We’ll start with the scalar wave equa
tion from above, a�u = v̇ and b� · v = u̇, but instead of solving for u and v as a 
function of time t, we’ll solve the equations as a function of space for harmonic modes 
u(x, t) = U(x)e−iωt and v(x, t) = V(x)e−iωt with ω = 0� . In particular, we’ll pick 
one direction, z, and look at propagation along the z direction. Plugging these har
monic modes into the scalar wave equations, and putting all of the ∂/∂z derivatives on 
the left-hand side, we obtain: � � � � � � 

∂w 
= 

∂ U 
= −iω 

0 
a 

−
a
iω U 

= D̂w,
∂z ∂z Vz b + �t · iω �t 0 Vz 

∂ ∂where �t = x̂ + ŷ ∂y denotes the “transverse” (xy) del operator, and we have ∂x 
eliminated the transverse components Vt of V via −iωVt = a�tU . This is again of 
the form of our abstract equation (1), with z replacing t! But is this D̂ anti-Hermitian? 

Let’s define our “inner product” via an integral over the xy plane: 

(w, w�) = [U∗Vz
� + U �Vz 

∗] d2x. (17) 

This is actually not a true inner product by the strict definition, because it is not positive 
definite: it is possible for �w�2 = (w, w) to be non-positive for w = 0. We’ll have �

ˆto live with the consequences of that later. But first, let’s verify that (w, Dw�) = 
−(D̂w, w�) for real a and b, via integration by parts: � � � � � � � 

(w, D̂w�) = U∗ iω
U � a iω

V � V ∗ d2x− 
b 

+ U∗�t · 
iω 
�tU

� + − 
a z z � �� � � � � �� 

iω ∗ 
a iω ∗ 

iω 
= − − 

b
U U � + (�t · 

iω 
�tU

∗)U � + − 
b
Vz + Vz

� − 
a
Vz 
∗ d2x 

= −(D̂w, w�). 
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So D̂ is “anti-Hermitian,” but in a “fake” inner product. To figure out the consequences 
of this, we have to go back to our original abstract derivations and look carefully to see 
where (if at all) we relied on the positive-definite property of inner products. 

Looking back at our proof, we see that we didn’t rely on positive-definiteness at all 
in our derivation of conservation of energy; we just took the derivative of (w, w). So, 
“energy” is conserved in space. What does that mean? Equation (17) can be interpreted 
as an integral of a time-average energy flux through the xy plane at z. Conservation of 
energy means that, in the absence of sources, with a steady-state (harmonic) solution, 
energy cannot be building up or decaying at any z. 

What about the Hermitian eigenproblem? What is the eigenproblem? We already 
have time-harmonic solutions. We can set up an eigenproblem in z only when the 
problem (i.e., a and b) is z-invariant (analogous to the time-invariance required for 
time-harmonic modes).7 In a z-invariant problem, the z direction is separable and we 
can look for solutions of the form w(x, y, z) = W(x, y)eiβz , where β is a propagation 
constant. Such solutions satisfy 

iD̂W = βW, 

which is a Hermitian eigenproblem but in our non-positive norm. Now, if one goes 
back to the derivation of real eigenvalues for Hermitian eigenproblems, something goes 
wrong: the eigenvalue β is only real if (W, W) = 0� . 

This, however is a useful and important result, once we recall that (W, W) is the 
“energy flux” in the z direction. Modes with real β are called propagating modes, and 
they have non-zero flux: propagating modes transport energy since (W, W) = 0 � for a 
typical real-β mode.8 Modes with complex (most often, purely imaginary) β are called 
evanescent modes, and they do not transport energy since (W, W) = 0 for them. 

What about orthogonality? Again, going back to the derivation of orthogonality 
for Hermitian eigenproblems, and not assuming the eigenvalues are real (since they 
aren’t for evanescent modes). The orthogonality condition follows from the equation 
[β∗ −β�] (W, W�) = 0 for eigensolutions W and W� with eigenvalues β and β�. That ·
is, modes are orthogonal if their eigenvalues are not complex conjugates. Moreover, 
since iD̂ is purely real, the eigenvalues must come in complex-conjugate pairs. This 
very useful, because it means if we want a field “parallel” to some eigenfield W and 
orthogonal to all the other eigenfields, we just use the eigenfield with the conjugate 
eigenvalue to W. And since D̂ is real, that is just W∗! So, in short, we have: 

(W∗, W�) = 0 

for distinct eigenvectors W and W�: the eigenvectors are orthogonal under the uncon
jugated “inner product.” 

Why have we gone through all this analysis of what seems like a rather odd prob
lem? Because this is a simpler version of something that turns out to be extremely 
useful in more complicated wave equations. In particular, the z-propagation version of 
the time-harmonic Maxwell equations plays a central role in understanding waveguides 
and “coupled-wave theory” in electromagnetism [16]. 

7Actually, we only need it to be periodic in z, in which case we can look for Bloch modes. 
8It is possible to have standing-wave modes with real β and (W, W) = 0, but these mainly occur at 

β = 0 (where symmetry causes the flux to be zero). 
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