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It is a remarkable fact [1] that Maxwell’s equations 
under any coordinate transformation can be written 
in an identical “Cartesian” form, if simple transfor
mations are applied to the materials (ε and µ), the 
fields (E and H), and the sources (ρ and J). This 
result has numerous useful and/or beautiful conse
quences, from designs of “invisibility cloaks” [2], 
to a simple derivation of PML absorbing boundaries 
[3], to enabling analyses of bent and twisted waveg
uides in terms analogous to a quantum Stark effect 
[4] , to providing a simple way of applying numer
ical methods designed for Cartesian coordinates to 
other coordinate systems [1]. 

Here, we review the proof in a compact form, gen
eralized to arbitrary anisotropic media. (Most previ
ous derivations seem to have been for isotropic me
dia in at least one coordinate frame [1], or for coordi
nate transformations with purely diagonal Jacobians 
J where Jii depends only on xi [3], or for constant 
affine coordinate transforms [5].) 

Summary of the Result 

Maxwell’s equations in Cartesian coordinates x are 
written (in natural units ε0 = µ0 = 1): 

∂E 
∇× H = ε + J (1) 

∂t 
∂H 

∇× E = −µ (2) 
∂t 

∇ · (εE) = ρ (3) 

∇ · (µH) = 0, (4) 

where J and ρ are the usual free current and charge 
densities, respectively, and ε(x) and µ(x) are the 
3 × 3 relative permittivity and permeability tensors, 
respectively. Now, suppose that we make some (dif

′ferentiable) coordinate transformation x 7→ x (usu
ally chosen to be non-singular, with some exceptions 
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[2]). Let J denote the 3 × 3 Jacobian matrix: 

∂x′ 

iJij = . 
∂xj 

We will show that Maxwell’s equations take on the 
same form (1–4) in the primed coordinate system, 
with ∇ replaced by ∇ ′ , if we make the transforma
tions: 

E ′ = (J T )−1
E, (5) 

H ′ = (J T )−1
H, (6) 

T
J εJ 

ε 
′ = , (7) 

det J 

J µJ T 

µ 
′ = , (8) 

det J 

J J 
J ′ = , (9) 

det J 
ρ 

ρ ′ = , (10) 
det J 

where J T is the transpose. 
Note that, even if we start out with isotropic mate

rials (scalar ε and µ), after a coordinate transforma
tion we in general obtain anisotropic materials (ten

′ sors ε and µ 
′ ). 

′For example, if x = sx for some scale factor 
′ ′ s 6 0, then ε = ε/s and µ = µ/s, which is pre= 

cisely the material scaling required to keep e.g. the 
eigenfrequencies fixed under a rescaling of a struc
ture. Note also that if s = −1, i.e. a coordinate in

′version, then we set E ′ = −E, H ′ = −H, ε = −ε 

and µ 
′ = −µ, and the system switches “handed

ness” (flipping the sign of the refractive index). [A 
more common alternative choice in that case would 
be to set H ′ = H, transforming H as a pseudovector 
[6], while keeping ε and µ unchanged. This corre
sponds to sprinkling a few factors of sign(det J ) in 
the above equations, which we are free to do as long 
as the sign is constant.] 



Proof 

We will proceed in index notation, employing the 
Einstein convention whereby repeated indices are 
summed over. Eq. (1) is now expressed: 

∂Ed
∂aHbǫabc = εcd + Jc (11) 

∂t 

where ǫabc is the usual Levi-Civita permutation ten
sor and ∂a = ∂/∂xa. Under a coordinate change 

∂x ′ 
ax 7→ x ′ , if we let Jab = 

∂xb 
be the (non-singular) 

Jacobian matrix associated with the coordinate trans
form (which may be a function of x), we have 

∂a = Jba∂b
′ . (12) 

Furthermore, as in eqs. (5–6), let 

Ea = JbaEb
′ , (13) 

Ha = JbaHb
′ . (14) 

Hence, eq. (11) becomes 

′∂E
Jia∂i

′ JjbHj 
′ ǫabc = εcdJld 

l + Jc. (15) 
∂t 

′Here, the Jia∂i = ∂a derivative falls on both the Jjb 
′and Hj terms, but we can eliminate the former thanks 

to the ǫabc: ∂aJjbǫabc = 0 because ∂aJjb = ∂bJja. 
Then, again multiplying both sides by the Jacobian 
Jkc, we obtain 

′∂E
JkcJjbJia∂i

′ Hj 
′ ǫabc = JkcεcdJld 

l + JkcJc
∂t 

(16) 
Noting that JiaJjbJkcǫabc = ǫijk det J by defini
tion of the determinant, we finally have 

′ 

∂i
′ Hj 

′ ǫijk =
1 

JkcεcdJld 
∂El + 

JkcJc (17) 
det J ∂t det J 

or, back in vector notation, 

J εJ T ∂E ′ 
∇ ′ × H ′ = + J ′ , (18) 

det J ∂t 

where J ′ = J J/ det J according to (9). Thus, we 
see that we can interpret Ampere’s Law in arbitrary 
coordinates as the usual equation in Euclidean coor
dinates, as long as we replace the materials etc. by 
eqs. (5–7). By an identical argument, we obtain 

∇ ′ × E ′ = − 
J µJ T ∂H ′ 

, (19) 
det J ∂t 
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which yields the transformation (8) for µ. 
The transformation of the remaining divergence 

equations into equivalent forms in the new coordi
nates is also straightforward. Gauss’ Law, eq. (3), 
becomes 

′ ′ ρ = ∂aεabEb = Jia∂iεabJjbEj 

′ −1ε ′ ′ = Jia∂i(det J )Jak kj Ej 

= (det J )∂ ′ ε ′ E ′ + (∂aJ
−1 

i ij j ak 

= (det J )∂i
′ εij 

′ Ej 
′ , 

which gives ∇ ′ · (ε 
′ 
E ′ ) = ρ′ for ρ′ 

det J )ε ′ E ′ kj	 j 

(20) 

= ρ/ det J , cor
responding to eq. (10). Similarly for eq. (4). Here, 
we have used the fact that 

−1∂aJak det J = ∂aǫanmǫkij JinJjm/2 = 0, (21) 

from the cofactor formula for the matrix inverse, and 
recalling that ∂aJjbǫabc = 0 from above. In partic
ular, note that ρ = 0 ⇐⇒ ρ′ = 0 and J = 0 ⇐⇒ 

J ′ = 0, so a non-singular coordinate transformation 
preserves the absence (or presence) of sources. 
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