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Resources 

An instructive applet illustrating physical Brownian motion can be found at: 

http://www.phy.ntnu.edu.tw/java/gas2D/gas2D.html 

For more information on this topic, see: 

H. Risken, The Fokker-Planck Equation (Springer, 2nd ed., 1989). 

Einstein’s Theory 

Einstein’s theory of Brownian motion (i.e. “Mathematical” Brownian motion) treats the 

process as a random walk with iid steps. Specifically, the motion considers both diffusion 

and drift such that 

v̄ = drift velocity = µF 

D 
where µ = . 

kT 

This description of Brownian motion was considered to a greater extent in past lectures. 
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Langevin’s Theory 

After Einstein’s theory was developed, Langevin published another model of Brownian mo

tion (i.e. “Physical” Brownian motion). Langevin’s model emphasizes that a particle moving 

due to random collisions with, say, gas molecules, does not actually experience independent 

steps since its inertia tends to keep it moving in roughly the same direction as its previous 

step. 

To account for inertia, the model is based on an expression of Newton’s second law: 

mv̇ = Ftot = Fext − αv + mΓ(t). (1) 

The αv term accounts for drag forces and the function Γ(t) is a stochastic noise term which 

accounts for random collisions with gas molecules. The function Γ(t) is truly a “white noise” 

in that 

�Γ(t)� = 0, 

�Γ(t)Γ(t�)� = q δ(t − t�). 

The above is like a continuous version of iid steps and the variable q is equivalent to 2Dv. 

In equation 1, the noise term is not multiplied by v, so we can reduce the equation to the 

Weiner-̂Ito SDE when Fext = 0: 

dv = −γv dt + Dv dz 

αIn the above, γ = 
m 
≡ τ−1 where τ can be thought of as the time needed for drag to kill 

acceleration. The Fokker-Planck equation for the resultant PDF is therefore 

∂ρ ∂ ∂2ρ 
(ρv) = Dv

∂t 
− γ

∂v ∂v2 
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At this point, it is worthwhile to discuss the behavior for a general stochastic process of 

the form 

ẋ = a(x, t) + b(x, t)Γ(t) 

with Γ(t) a white noise. There are actually two different treatments of the problem each 

invoking different methods of numerical solution. In solving iteratively for x to various orders 

of accuracy, it becomes necessary to define how we evaluate integrals of the form 

� τ 

Φ(w(t), t) d(w(t)) 
0 

for a non-stochastic function Φ where w(τ) ≡ 
� t+τ 

Γ(t�) dt� for some fixed t. 
t 

1. Îto : Under Îto’s definition, the integral is solved using 

� ti+1 

Φ(w(t), t) d(w(t)) ⇒ Φ(w(ti), ti)[w(ti+1)− w(ti)] 
ti 

where i is the step index. Numerical solution via the Îto definition resembles the 

forward Euler method for solving PDE’s in one time derivative. The resulting Fokker-

Planck equation has drift coefficient D1 = a(x, t). 

2. Stratonovich: Under this definition, we solve the SDE in a manner analagous to the 

Crank-Nicholson scheme, using 

� ti+1 
� 

w(ti) + w(ti+1) ti + ti+1 

� 

Φ(w(t), t) d(w(t)) ⇒ Φ , [w(ti+1)− w(ti)]. 
2 2ti 

The resulting Fokker-Planck equation has drift coefficient D1 = a(x, t)+ bx(x, t)b(x, t). 

The additional term is called the noise induced drift. 

The diffusion coefficient D2 is, however, the same under both definitions. For clarity, if the Îto 

definition is intended, the SDE will be displayed in terms of increments (e.g. dx = a dt+b dz), 

and if the Stratonovich definition is intended, the SDE will be written in terms of stochastic 

derivatives (e.g. ẋ = a + b Γ(t)). 
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v 

We now return to the physical Brownian motion SDE, dv = −γv dt + 
√

Dv dz. Either 

of the previous definitions suffices here since b(x, t) = constant. Our SDE is actually the 

Ornstein-Uhlenbeck process for velocity. Its solution is 

(v−¯
� 

v(t))2 
� 

exp 
2σv (t)2 

ρ(v, t) = 
− 

2πσv(t)2 

where v̄(t) = v0 exp(−γt) and σv(t)
2 = Dv(1 − exp(−2γt))/γ. 

v
0 

σ2 

D  / γ 
v

t=τ time t=τ time 

γ

The figures above illustrates the ballistic to diffusive transition which occurs near t = 

−1 = τ .


v
In a steady state, we have ¯ = 0, σ2 = Dv/γ. This yields: v 

γv2 

exp 
2Dv
−

ρ(v,∞) = 
2πDv/γ 

∝ exp(−E/kT ) = exp(−mv 2/2kT )← Maxwell’s Distribution. 

Thus we may deduce: 

2γv2 mv
= = Dv = γkT/m = γv 2 

2Dv 2kT 
⇒ thermal 

At this point we may now draw an interesting connection to mathematical Brownian 

motion. In steady state, the force balance becomes 

0 = Ftot = Fext − αv + mΓ(t). 
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When Fext = 0 the Green-Kubo expression for Dx yields 
� 

∞ 
� 

∞ 

Dx = �v(0)v(t)� dt = γ−2 �Γ(0)Γ(t)� dt 
0 0 

� 
∞ kT 

= 2Dvγ
−2 δ(t) dt = γ−2Dv = . 

γm 0 

Recall that in Einstein’s theory, 

vdrift Dx 

F
µ = = . 

ext kT 

The force expression above indicates that in steady state, 
vdrift = α−1 = (γm)−1 . Thus we 
Fext 

have deduced 
kT 

(γm)−1 = 
Dx 

= Dx = . 
kT 

⇒
γm 

This was our precise result from analyzing the Langevin Equation. 

Kramer’s Theory 

Kramer’s solution to physical Brownian motion deals with phase space coordinates (x, v). 

This turns the problem into solving two coupled SDE’s: 

(̂
Fext 

� 

Ito) dx = v dt, dv = (−γv + ) dt + Dv dz 
m 

or 

Fext 
� 

(Stratonovich) ẋ = v, v̇ = −γv + + Dv Γ(t). 
m 

We proceed by writing the multi-dimensional Fokker-Planck equation for ρ(x, v, t): 

∂ρ 
+ � D1ρ) = (� �) : (D2ρ)

∂t 
� · ( �


where D1 is the drift vector (first moment vector) and D2 is the diffusion matrix (second 

moment matrix). They are defined naturally by 
⎛ ⎞ ⎛ ⎞ 

x 0 1 
D1 = −γ ⎝ ⎠ for γ = ⎝ ⎠ , and 

v 0 −γ 
⎛ ⎞ 

0 0 
D2 = ⎝ ⎠ .


0 Dv
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Applying the Fokker-Planck equation in phase space yields Kramer’s equation for the time 

evolution of the PDF: 

∂ρ ∂ ∂ 1 ∂ ∂2ρ 
+ (vρ)− γ (vρ) = (F (x)ρ) + Dv . 

∂t ∂x ∂v 
− 

m ∂v ∂v2 

This is typically solved using characteristics. When Fext = −ksx, the Kramer’s equation can 

be solved exactly using principles from vector Ornstein-Uhlenbeck processes. Letting ks → 

yields 
1�z A�z− 

2π

exp 
2
·

ρ(x, v, t x0, v0, t0 = 0) =|
|A| 

where ⎞⎛⎞⎛ 

x x̄
A = variance matrix, �z =
 ⎝


v

⎠ −
⎝
 ⎠ , 

v̄

v0
x̄(t) = x0 + (1 − exp(−γt)), v̄(t) = v0 exp(−γt). 

γ 

The components of the variance matrix are 

kT 
Axx = 

mγ2 
(2γt − 3 + 4 exp(−γt)− exp(−2γt)) 

kT 
Avv = (1 − exp(−2γt)) 

m 
kT 

Axv = Avx = (1 − exp(−γt))2 . 
m 

We can construct a PDF for position, c(x, t x0, t0 = 0), based on this extended PDF |
ρ(x, v, t x0, v0, t0 = 0). We remove dependence on the initial velocity v0 by averaging it out |
over a Maxwell distribution of possible starting velocities. We then remove dependence on 

the final velocity v by integrating this result over all possible final velocities. Thus, 
⎞⎛ 

2� 
∞ 

v=−∞ 

� 
∞ 0exp(− mv

2kT 
)⎜

⎜
⎜
⎝


dv0 

⎟
⎟
⎟
⎠


dv c(x, t) ρ(x, v, t x0, v0, t0 = 0) |= 
2πkT/m v0 =−∞ 

Maxwell Distribution 

2xexp − 
2σx(t)2 

= 
2πσx(t)2 
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thermal where σx(t)
2 = 

2v2 

(γt − 1 + exp(−γt)). Note that: 
γ2 

σx(t)
2 ∼ 

⎧ 

⎪⎨ 

⎪⎩


v2 t2 for γt � 1thermal

2Dxt for γt � 1. 

This indicates the ballisitic → diffusive transition akin to the result from Telegrapher’s 

Equation in solving for persistent random walks. 
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