
8. Capillary Rise
 
Capillary rise is one of the most well-known and vivid illustrations of capillarity. It is exploited in a number 
of biological processes, including drinking strategies of insects, birds and bats and plays an important role 
in a number of geophysical settings, including flow in porous media such as soil or sand. 

Historical Notes: 

•	 Leonardo da Vinci (1452 - 1519) recorded the effect in his notes and proposed that mountain streams 
may result from capillary rise through a fine network of cracks 

•	 Jacques Rohault (1620-1675): erroneously suggested that capillary rise is due to suppresion of air 
circulation in narrow tube and creation of a vacuum 

•	 Geovanni Borelli (1608-1675): demonstrated experimentally that h ∼ 1/r 

•	 Geminiano Montanari (1633-87): attributed circulation in plants to capillary rise 

•	 Francis Hauksbee (1700s): conducted an extensive series of capillary rise experiments reported by 
Newton in his Opticks but was left unattributed 

•	 James Jurin (1684-1750): an English physiologist who independently confirmed h ∼ 1/r; hence 
“Jurin’s Law”. 

Consider capillary rise in a cylindrical tube of inner radius a (Fig. 8.2) 

Recall:
 
Spreading parameter: S = γSV − (γSL + γLV ).
 

We now define Imbibition / Impregnation parame
ter:
 
I = γSV − γSL = γLV cos θ
 
via force balance at contact line.
 
Note: in capillary rise, I is the relevant parameter,
 
since motion of the contact line doesn’t change the
 
energy of the liquid-vapour interface.
 

Imbibition Condition: I > 0. 

Note: since I = S + γLV , the imbibition condition 
I > 0 is always more easily met than the spreading 
condition, S > 0 Figure 8.1: Capillary rise and fall in a tube for two 
⇒ most liquids soak sponges and other porous me- values of the imbibition parameter I: 
dia, while complete spreading is far less common. I > 0 (left) and I < 0 (right). 

26 



Chapter 8. Capillary Rise 

We want to predict the dependence of rise height H on both tube radius a and wetting properties. We 
do so by minimizing the total system energy, specifically the surface and gravitational potential energies. 
The energy of the water column: 

E = (γSL − γSV ) 2πaH + 
1 
ρga2πH2 = −2πaHI +

1 
ρga2πH2 

 ;  2 2
surface energy 

 ;  

grav.P.E. 

will be a minimum with respect to H when dE = 0
dH 

2γSV −γSL 2 I⇒ H = = , from which we deduce ρga ρga

γLV cos θ 
Jurin’s Law H = 2 (8.1) 

ρgr 

Note: 

1. describes both capillary rise and descent: sign 
of H depends on whether θ > π/2 or θ < π/2 

2. H increases as θ decreases. Hmax for θ = 0 

3. we’ve implicitly assumed R ≪ H & R ≪ lC . 

The same result may be deduced via pressure or 
force arguments. 
By Pressure Argument 
Provided a ≪ ℓc, the meniscus will take the form 

aof a spherical cap with radius R = . Therefore 
cos θ

cos θ cos θpA = pB − 2σ = p0 − 2σ = p0 − ρgH a a
 
2σ cos θ
⇒ H = as previously. ρga 

By Force Argument 
The weight of the column supported by the tensile 
force acting along the contact line: 
ρπa2Hg = 2πa (γSV − γSL) = 2πaσ cos θ, from 
which Jurin’s Law again follows. 

Figure 8.2: Deriving the height of capillary rise in 
a tube via pressure arguments. 
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8.1. Dynamics Chapter 8. Capillary Rise 

8.1 Dynamics 

The column rises due to capillary forces, its rise being resisted by a combination of gravity, viscosity, fluid 
I

inertia and dynamic pressure. Conservation of momentum dictates d (m(t)ż(t)) = FTOT + ρvv · ndA,
dt S 

2where the second term on the right-hand side is the total momentum flux, which evaluates to πa2ρż = ṁż, 
so the force balance on the column may be expressed as 

  
1 

2  m + ma
 z̈ = 2πaσ cos θ − mg − πa2 ρż − 2πaz · τv (8.2) 

2; ; ; ; ;
Inertia capillary force Added mass weight 

; 
viscous force 

dynamic pressure 

where m = πa2zρ. Now assume the flow in the tube is fully developed Poiseuille flow, which will be 
2 

( )
aestablished after a diffusion time τ = ν . Thus, u(r) = 2ż 1− a

r 2
2 , and F = πa2ż is the flux along the 

tube. 
du − 4µThe stress along the outer wall: τν = µ ż.|r=a = dr a 

Finally, we need to estimate ma, which will dominate the dynamics at short time. We thus estimate the 
( 
1change in kinetic energy as the column rises from z to z+Δz. ΔEk = Δ mU2

)
, where m = mc+m0+m∞2 

(mass in the column, in the spherical cap, and all the other mass, respectively). In the column,mc = πa2zρ, 
2π u = U . In the spherical cap, m0 = a3ρ, u = U . In the outer region, radial inflow extends to ∞, but 
3 

u(r) decays. 
Volume conservation requires: πa2U = 2πa2ur(a) ⇒ ur(a) = U/2. 

a aContinuity thus gives: 2πa2ur(a) = 2πr2ur(r) ⇒ ur(r) = r2
2 
ur(a) = 

2r

2

2 U . 
eff U2 1 

I
∞ 

(r)2Thus, the K.E. in the far field: 1 m = ur dm, where dm = ρ2πr2dr. 
∞2 2 a 

Hence 
1
∞ ( )2

1 a2 

m = eff ρ U 2πr2dr = 
∞ U2 2r2 

a 
1
∞ 1 1 

= πρa4 dr = ρπa3 

2r2 2a 

Now 

1
)U2 1 

Δ (mc + m0 + m∞ + m2UΔU =ΔEk = 
2 2
 
1 1
 ( eff 

)
U2 = Δmc + mc + m0 + m 2UΔU = 

∞2 2 
1 
( ) 

U2 
(

2 1 
)

= πa2ρΔz + πa2ρz+ πa3ρ+ πa3ρ UΔU
2 3 2 Figure 8.3: The dynamics of capillary rise. 

7 − 4µSubstituting for m = πa2zρ, ma = πa3ρ (added mass) and τv = ż into (8.2) we arrive at 
6 a 

( )
7 2σ cos θ 1 8µzż

z + a z̈ = − ż2 − − gz (8.3) 
6 ρa 2 ρa2 

The static balance clearly yields the rise height, i.e. Jurin’s Law. But how do we get there? 
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Inertial Regime 

1. the timescale of	 establishment of Poiseuille
 
flow is τ∗ = 4a 

2
 
, the time required for boundν 

ary effects to diffuse across the tube 

2.	 until this time, viscous effects are negligible 
and the capillary rise is resisted primarily by Figure 8.4: The various scaling regimes of capillary 
fluid inertia rise. 

7 2σ cos θInitial Regime: z ∼ 0, ż ∼ 0, so the force balance assumes the form 
6 ρa az̈ = We thus infer 

6 σ cos θz(t) = t2 .
7 ρa2 

7 
(

7 
) 

2σ cos θOnce z ≥ a, one must also consider the column mass, and so solve z + a	 z̈ = . As the col
6 6 ρa 

2 2 2σ cos θumn accelerates from ż = 0, ż becomes important, and the force balance becomes: 1 ż = ⇒
2 ρa 

( )1/2 
4σ cos θ ż = U = is independent of g, µ.ρa
 

( )1/2
 
4σ cos θz = t.ρa 

Viscous Regime (t ≫ τ∗) Here, inertial effects become negligible, so the force balance assumes the form: 
2σ cos θ − 8µzż	 8µzż 2σ cos θ ρga2 ( 

H 
)

− gz = 0. We thus infer H − z = , where H = , ż = − 1ρa ρa2	 ρga2 ρga 8µ z 
∗	 8µH Nondimensionalizing: z = z/H, t∗ = t/τ , τ = ;ρga2 

∗ 1 z	 1 ⇒ t∗ ∗We thus have ż = z ∗ ⇒ dt∗ = 
∗ 

dz∗ = (−1− 
1−z ∗ )dz

∗ = −z − ln(1− z ∗). 
−1 1−z ∗ 

∗ 
Note: at t ∗ →∞, z → 1. 

√ 
∗ ∗	 ∗Early Viscous Regime: When z ≪ 1, we consider ln(z − 1) = −z ∗ − 1 z ∗2and so infer z = 2t∗ .

2 
[ ]1/2 
σa cos θRedimensionalizing thus yields Washburn’s Law : z = 

2µ t

Note that ż is independent of g. 

∗Late Viscous Regime: As z approaches H, z ≈ 1. Thus, we consider t∗ = [−z ∗ −ln(1−z ∗)] = ln(1−z ∗) 
∗and so infer z = 1− exp(−t ∗). 

2σ cos θ 8µH Redimensionalizing yields z = H [1− exp(−t/τ)], where H = and τ = ρga ρga2 . 

2 
( )1/2 

∗ 4a	 ∗ 4σ cos θ 4a 2 
Note: if rise timescale ≪ τ = , inertia dominates, i.e. H ≪ Uintertialτ = ⇒ inertial ν	 ρa ν 

overshoot arises, giving rise to oscillations of the water column about its equilibrium height H. 

cos θWicking In the viscous regime, we have 2σ = ρa 
8µzż
ρa2 + ρg. What if the viscous stresses dominate 
gravity? This may arise, for example, for predomi
nantly horizontal flow (Fig. 8.5). 

2σa cos θ 1 d 2Force balance: = zż = z	 ⇒ z = 
8µ 2 dt

( )1/2 √ 
σa cos θ 

2µ t ∼ t (Washburn’s Law). 

Note: Front slows down, not due to g, but owing to 
increasing viscous dissipation with increasing col- Figure 8.5: Horizontal flow in a small tube. 
umn length. 
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