8. Capillary Rise

Capillary rise is one of the most well-known and vivid illustrations of capillarity. It is exploited in a number of biological processes, including drinking strategies of insects, birds and bats and plays an important role in a number of geophysical settings, including flow in porous media such as soil or sand.

Historical Notes:

- Leonardo da Vinci (1452 1519) recorded the effect in his notes and proposed that mountain streams may result from capillary rise through a fine network of cracks
- Jacques Rohault (1620-1675): erroneously suggested that capillary rise is due to suppression of air circulation in narrow tube and creation of a vacuum
- Geovanni Borelli (1608-1675): demonstrated experimentally that $h \sim 1/r$
- Geminiano Montanari (1633-87): attributed circulation in plants to capillary rise
- Francis Hauksbee (1700s): conducted an extensive series of capillary rise experiments reported by Newton in his Opticks but was left unattributed
- James Jurin (1684-1750): an English physiologist who independently confirmed $h \sim 1/r$; hence "Jurin's Law".

Consider capillary rise in a cylindrical tube of inner radius a (Fig. 8.2)

Recall:

Spreading parameter: $S = \gamma_{SV} - (\gamma_{SL} + \gamma_{LV})$. We now define Imbibition / Impregnation parameter:

 $I = \gamma_{SV} - \gamma_{SL} = \gamma_{LV} \cos \theta$

via force balance at contact line.

Note: in capillary rise, I is the relevant parameter, since motion of the contact line doesn't change the energy of the liquid-vapour interface.

Imbibition Condition: I > 0.

Note: since $I = S + \gamma_{LV}$, the imbibition condition I > 0 is always more easily met than the spreading condition, S > 0

 \Rightarrow most liquids soak sponges and other porous media, while complete spreading is far less common.

Figure 8.1: Capillary rise and fall in a tube for two values of the imbibition parameter I: I > 0 (*left*) and I < 0 (*right*).

We want to predict the dependence of rise height H on both tube radius a and wetting properties. We do so by minimizing the total system energy, specifically the surface and gravitational potential energies. The energy of the water column:

$$E = \underbrace{\left(\gamma_{SL} - \gamma_{SV}\right)2\pi aH}_{surface\ energy} + \underbrace{\frac{1}{2}\rho g a^2 \pi H^2}_{grav.P.E.} = -2\pi aHI + \frac{1}{2}\rho g a^2 \pi H^2$$

will be a minimum with respect to H when $\frac{dE}{dH} = 0$ $\Rightarrow H = 2 \frac{\gamma_{SV} - \gamma_{SL}}{\rho ga} = 2 \frac{I}{\rho ga}$, from which we deduce

Jurin's Law
$$H = 2 \frac{\gamma_{LV} \cos \theta}{4}$$
 (8.1)

Note:

- 1. describes both capillary rise and descent: sign of H depends on whether $\theta > \pi/2$ or $\theta < \pi/2$
- 2. *H* increases as θ decreases. H_{max} for $\theta = 0$
- 3. we've implicitly assumed $R \ll H \& R \ll l_C$.

The same result may be deduced via pressure or force arguments.

By Pressure Argument

Provided $a \ll \ell_c$, the meniscus will take the form of a spherical cap with radius $R = \frac{a}{\cos \theta}$. Therefore $p_A = p_B - \frac{2\sigma \cos \theta}{a} = p_0 - \frac{2\sigma \cos \theta}{a} = p_0 - \rho g H$ $\Rightarrow H = \frac{2\sigma \cos \theta}{\rho g a}$ as previously. **By Force Argument**

The weight of the column supported by the tensile force acting along the contact line:

 $\rho \pi a^2 Hg = 2\pi a \left(\gamma_{SV} - \gamma_{SL}\right) = 2\pi a \sigma \cos \theta$, from which Jurin's Law again follows.

Figure 8.2: Deriving the height of capillary rise in a tube via pressure arguments.

8.1 **Dynamics**

The column rises due to capillary forces, its rise being resisted by a combination of gravity, viscosity, fluid inertia and dynamic pressure. Conservation of momentum dictates $\frac{d}{dt}(m(t)\dot{z}(t)) = F_{TOT} + \int_{S} \rho \boldsymbol{v} \boldsymbol{v} \cdot \boldsymbol{n} dA$, where the second term on the right-hand side is the total momentum flux, which evaluates to $\pi a^2 \rho \dot{z}^2 = \dot{m} \dot{z}$, so the force balance on the column may be expressed as

$$\begin{pmatrix} m + m_a \\ Inertia & Added & mass \end{pmatrix} \ddot{z} = \frac{2\pi a\sigma \cos\theta}{capillary \ force} - \frac{mg}{weight} - \frac{\pi a^2 \frac{1}{2}\rho \dot{z}^2}{dynamic \ pressure} - \frac{2\pi az \cdot \tau_v}{viscous \ force}$$
(8.2)

where $m = \pi a^2 z \rho$. Now assume the flow in the tube is fully developed Poiseuille flow, which will be established after a diffusion time $\tau = \frac{a^2}{\nu}$. Thus, $u(r) = 2\dot{z}\left(1 - \frac{r^2}{a^2}\right)$, and $F = \pi a^2 \dot{z}$ is the flux along the tube.

The stress along the outer wall: $\tau_{\nu} = \mu \frac{du}{dr}|_{r=a} = -\frac{4\mu}{a}\dot{z}$. Finally, we need to estimate m_a , which will dominate the dynamics at short time. We thus estimate the change in kinetic energy as the column rises from z to $z + \Delta z$. $\Delta E_k = \Delta \left(\frac{1}{2}mU^2\right)$, where $m = m_c + m_0 + m_\infty$ (mass in the column, in the spherical cap, and all the other mass, respectively). In the column, $m_c = \pi a^2 z \rho$, u = U. In the spherical cap, $m_0 = \frac{2\pi}{3}a^3\rho$, u = U. In the outer region, radial inflow extends to ∞ , but u(r) decays.

Volume conservation requires: $\pi a^2 U = 2\pi a^2 u_r(a) \Rightarrow u_r(a) = U/2.$

Continuity thus gives: $2\pi a^2 u_r(a) = 2\pi r^2 u_r(r) \Rightarrow u_r(r) = \frac{a^2}{r^2} u_r(a) = \frac{a^2}{2r^2} U.$ Thus, the K.E. in the far field: $\frac{1}{2} m_{\infty}^{eff} U^2 = \frac{1}{2} \int_a^{\infty} u_r(r)^2 dm$, where $dm = \rho 2\pi r^2 dr$.

Hence

Substituting for $m = \pi a^2 z \rho$, $m_a = \frac{7}{6} \pi a^3 \rho$ (added mass) and $\tau_v = -\frac{4\mu}{a} \dot{z}$ into (8.2) we arrive at

$$\left(z+\frac{7}{6}a\right)\ddot{z} = \frac{2\sigma\cos\theta}{\rho a} - \frac{1}{2}\dot{z}^2 - \frac{8\mu z\dot{z}}{\rho a^2} - gz \tag{8.3}$$

The static balance clearly yields the rise height, i.e. Jurin's Law. But how do we get there?

Inertial Regime

- 1. the timescale of establishment of Poiseuille flow is $\tau^* = \frac{4a^2}{\nu}$, the time required for boundary effects to diffuse across the tube
- 2. until this time, viscous effects are negligible and the capillary rise is resisted primarily by fluid inertia

Figure 8.4: The various scaling regimes of capillary rise.

Initial Regime: $z \sim 0$, $\dot{z} \sim 0$, so the force balance assumes the form $\frac{7}{6}a\ddot{z} = \frac{2\sigma\cos\theta}{\rho a}$ We thus infer $z(t) = \frac{6}{7}\frac{\sigma\cos\theta}{\rho a^2}t^2$.

Once $z \ge \frac{7}{6}a$, one must also consider the column mass, and so solve $(z + \frac{7}{6}a)\ddot{z} = \frac{2\sigma\cos\theta}{\rho a}$. As the column accelerates from $\dot{z} = 0$, \dot{z}^2 becomes important, and the force balance becomes: $\frac{1}{2}\dot{z}^2 = \frac{2\sigma\cos\theta}{\rho a} \Rightarrow$

$$\dot{z} = U = \left(\frac{4\sigma\cos\theta}{\rho a}\right)^{1/2} \text{ is independent of } g, \mu.$$
$$z = \left(\frac{4\sigma\cos\theta}{\rho a}\right)^{1/2} t.$$

Viscous Regime $(t \gg \tau^*)$ Here, inertial effects become negligible, so the force balance assumes the form: $\frac{2\sigma\cos\theta}{\rho a} - \frac{8\mu z\dot{z}}{\rho a^2} - gz = 0$. We thus infer $H - z = \frac{8\mu z\dot{z}}{\rho ga^2}$, where $H = \frac{2\sigma\cos\theta}{\rho ga}$, $\dot{z} = \frac{\rho ga^2}{8\mu} \left(\frac{H}{z} - 1\right)$ Nondimensionalizing: $z^* = z/H$, $t^* = t/\tau$, $\tau = \frac{8\mu H}{\rho ga^2}$; We thus have $\dot{z}^* = \frac{1}{z^*-1} \Rightarrow dt^* = \frac{z^*}{1-z^*} dz^* = (-1 - \frac{1}{1-z^*}) dz^* \Rightarrow t^* = -z^* - \ln(1-z^*)$. Note: at $t^* \to \infty$, $z^* \to 1$.

Early Viscous Regime: When $z^* \ll 1$, we consider $\ln(z^* - 1) = -z^* - \frac{1}{2}z^{*2}$ and so infer $z^* = \sqrt{2t^*}$. Redimensionalizing thus yields Washburn's Law: $z = \left[\frac{\sigma a \cos \theta}{2\mu}t\right]^{1/2}$ Note that \dot{z} is independent of g.

Late Viscous Regime: As z approaches H, $z^* \approx 1$. Thus, we consider $t^* = [-z^* - \ln(1-z^*)] = \ln(1-z^*)$ and so infer $z^* = 1 - \exp(-t^*)$. Redimensionalizing yields $z = H [1 - \exp(-t/\tau)]$, where $H = \frac{2\sigma \cos \theta}{\rho g a}$ and $\tau = \frac{8\mu H}{\rho g a^2}$.

Note: if rise timescale $\ll \tau^* = \frac{4a^2}{\nu}$, inertia dominates, i.e. $H \ll U_{intertial}\tau^* = \left(\frac{4\sigma\cos\theta}{\rho a}\right)^{1/2}\frac{4a^2}{\nu} \Rightarrow$ inertial overshoot arises, giving rise to oscillations of the water column about its equilibrium height H.

Wicking In the viscous regime, we have $\frac{2\sigma\cos\theta}{\rho a} = \frac{8\mu z\dot{z}}{\rho a^2} + \rho g$. What if the viscous stresses dominate gravity? This may arise, for example, for predominantly horizontal flow (Fig. 8.5). Force balance: $\frac{2\sigma a\cos\theta}{8\mu} = z\dot{z} = \frac{1}{2}\frac{d}{dt}z^2 \Rightarrow z = \left(\frac{\sigma a\cos\theta}{2\mu}t\right)^{1/2} \sim \sqrt{t}$ (Washburn's Law).

Note: Front slows down, not due to g, but owing to increasing viscous dissipation with increasing column length.

Figure 8.5: Horizontal flow in a small tube.

357 Interfacial Phenomena Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.