7. Spinning, tumbling and rolling drops

7.1 Rotating Drops

We want to find $z=h(r)$ (see right). Normal stress balance on S :

$$
\Delta P+\underbrace{\frac{1}{2} \Delta \rho \Omega^{2} r^{2}}_{\text {centrifugal }}=\underbrace{\sigma \nabla \cdot n}_{\text {curvature }}
$$

Nondimensionalize:
$\Delta p^{\prime}+4 B_{0}\left(\frac{r}{a}\right)^{2}=\boldsymbol{\nabla} \cdot \boldsymbol{n}$,
where $\Delta p^{\prime}=\frac{a \Delta p}{\sigma}, \Sigma=\frac{\Delta \rho \Omega^{2} a^{3}}{8 \sigma}=\frac{\text { centrifugal }}{\text { curvature }}=$ Rotational Bond number $=$ const. Define surface functional: $f(r, \theta)=z-h(r) \Rightarrow$ vanishes on the surface. Thus
$\mathbf{n}=\frac{\nabla \dot{f}}{|\boldsymbol{\nabla}|}=\frac{\hat{z}-h_{r}(r) \hat{r}}{\left(1+h_{r}^{2}(r)\right)^{1 / 2}}$ and $\boldsymbol{\nabla} \cdot \boldsymbol{n}=\frac{-r h_{r}-r^{2} h_{r r}}{r^{2}\left(1+h_{r}^{2}\right)^{3 / 2}}$

Figure 7.1: The radial profile of a rotating drop.

Brown + Scriven (1980) computed drop shapes and stability for $B_{0}>0$:

1. for $\Sigma<0.09$, only axisymmetric solutions, oblate ellipsoids
2. for $0.09<\Sigma<0.31$, both axisymmetric and lobed solutions possible, stable
3. for $\Sigma>0.31$ no stable solution, only lobed forms

Tektites: centimetric metallic ejecta formed from spinning cooling silica droplets generated by meteorite impact.

Q1: Why are they so much bigger than raindrops? From raindrop scaling, we expect $\ell_{c} \sim \sqrt{\frac{\sigma}{\Delta \rho g}}$ but both $\sigma, \Delta \rho$ higher by a factor of $10 \Rightarrow$ large tektite size suggests they are not equilibrium forms, but froze into shape during flight.
Q2: Why are their shapes so different from those of raindrops? Owing to high ρ of tektites, the internal dynamics (esp. rotation) dominates the aerodynamics \Rightarrow drop shape set by its rotation.

Figure 7.2: The ratio of the maximum radius to the unperturbed radius is indicated as a function of Σ. Stable shapes are denoted by the solid line, their metastable counterparts by dashed lines. Predicted 3-dimensional forms are compared to photographs of natural tektites. From Elkins-Tanton, Ausillous, Bico, Quéré and Bush (2003).

Light drops: For the case of $\Sigma<0, \Delta \rho<0$, a spinning drop is stabilized on axis by centrifugal pressures. For high $|\Sigma|$, it is well described by a cylinder with spherical caps. Drop energy:

$$
E=\underbrace{\frac{1}{2} I \Omega^{2}}_{\text {Rotational K.E. }}+\underbrace{2 \pi r L \gamma}_{\text {Surface energy }}
$$

Neglecting the end caps, we write volume $V=\pi r^{2} L$ and moment of inertia $I=\frac{\Delta m r^{2}}{2}=\Delta \rho \frac{\pi}{2} L r^{4}$.

Figure 7.3: A bubble or a drop suspended in a denser fluid, spinning with angular speed Ω.
The energy per unit drop volume is thus $\frac{E}{V}=\frac{1}{4} \Delta \rho \Omega^{2} r^{2}+\frac{2 \gamma}{r}$.
Minimizing with respect to r :
$\frac{d}{d r}\left(\frac{E}{V}\right)=\frac{1}{2} \Delta \rho \Omega^{2} r-\frac{2 \gamma}{r^{2}}=0$, which occurs when $r=\left(\frac{4 \gamma}{\Delta \rho \Omega^{2}}\right)^{1 / 3}$. Now $r=\left(\frac{V}{\pi L}\right)^{1 / 2}=\left(\frac{4 \gamma}{\Delta \rho \Omega^{2}}\right)^{1 / 3} \Rightarrow$
Vonnegut's Formula: $\gamma=\frac{1}{4 \pi^{3 / 2}} \Delta \rho \Omega^{2}\left(\frac{V}{L}\right)^{3 / 2}$ allows inference of γ from L, useful technique for small γ as it avoids difficulties associated with fluid-solid contact.
Note: r grows with σ and decreases with Ω.

7.2 Rolling drops

Figure 7.4: A liquid drop rolling down an inclined plane.
(Aussillous and Quere 2003) Energetics: for steady descent at speed V, $M g V \sin \theta=$ Rate of viscous dissipation $=2 \mu \int_{V_{d}}(\boldsymbol{\nabla} \boldsymbol{u})^{2} \mathrm{~d} V$, where V_{d} is the dissipation zone, so this sets $V \Rightarrow \Omega=V / R$ is the angular speed. Stability characteristics different: bioconcave oblate ellipsoids now stable.

MIT OpenCourseWare
http://ocw.mit.edu

민357 Interfacial Phenomena

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

