7. Spinning, tumbling and rolling drops

7.1 Rotating Drops

We want to find z = h(r) (see right). Normal stress balance on S:

$$\Delta P + \underbrace{\frac{1}{2} \Delta \rho \Omega^2 r^2}_{centrifugal} = \underbrace{\sigma \nabla \cdot n}_{curvature}$$

Nondimensionalize: $\Delta p' + 4B_0 \left(\frac{r}{a}\right)^2 = \boldsymbol{\nabla} \cdot \boldsymbol{n},$ where $\Delta p' = \frac{a\Delta p}{\sigma}, \ \Sigma = \frac{\Delta \rho \Omega^2 a^3}{8\sigma} = \frac{centrifugal}{curvature} = =$ Rotational Bond number = const. Define surface functional: $f(r, \theta) = z - h(r) \Rightarrow$ vanishes on the surface. Thus $\mathbf{n} = \frac{\boldsymbol{\nabla} f}{|\boldsymbol{\nabla}|} = \frac{\hat{z} - h_r(r)\hat{r}}{(1+h_r^2(r))^{1/2}}$ and $\boldsymbol{\nabla} \cdot \boldsymbol{n} = \frac{-rh_r - r^2h_{rr}}{r^2(1+h_r^2)^{3/2}}$

Figure 7.1: The radial profile of a rotating drop.

Brown + Scriven (1980) computed drop shapes and stability for $B_0 > 0$:

- 1. for $\Sigma < 0.09$, only axisymmetric solutions, oblate ellipsoids
- 2. for $0.09 < \Sigma < 0.31$, both axisymmetric and lobed solutions possible, stable
- 3. for $\Sigma > 0.31$ no stable solution, only lobed forms

Tektites: centimetric metallic ejecta formed from spinning cooling silica droplets generated by meteorite impact.

Q1: Why are they so much bigger than raindrops? From raindrop scaling, we expect $\ell_c \sim \sqrt{\frac{\sigma}{\Delta \rho g}}$ but both σ , $\Delta \rho$ higher by a factor of $10 \Rightarrow$ large tektite size suggests they are not equilibrium forms, but froze into shape during flight.

Q2: Why are their shapes so different from those of raindrops? Owing to high ρ of tektites, the internal dynamics (esp. rotation) dominates the aerodynamics \Rightarrow drop shape set by its rotation.

Figure 7.2: The ratio of the maximum radius to the unperturbed radius is indicated as a function of Σ . Stable shapes are denoted by the solid line, their metastable counterparts by dashed lines. Predicted 3-dimensional forms are compared to photographs of natural tektites. From *Elkins-Tanton*, *Ausillous*, *Bico*, *Quéré and Bush (2003)*.

Light drops: For the case of $\Sigma < 0$, $\Delta \rho < 0$, a spinning drop is stabilized on axis by centrifugal pressures. For high $|\Sigma|$, it is well described by a cylinder with spherical caps. Drop energy:

$$E = \underbrace{\frac{1}{2}I\Omega^2}_{Botational\ K.E.} + \underbrace{\frac{2\pi rL\gamma}_{Surface\ energy}}_{Surface\ energy}$$

Neglecting the end caps, we write volume $V = \pi r^2 L$ and moment of inertia $I = \frac{\Delta m r^2}{2} = \Delta \rho \frac{\pi}{2} L r^4$.

Figure 7.3: A bubble or a drop suspended in a denser fluid, spinning with angular speed Ω .

The energy per unit drop volume is thus $\frac{E}{V} = \frac{1}{4}\Delta\rho\Omega^2 r^2 + \frac{2\gamma}{r}$. Minimizing with respect to r:

$$\frac{d}{dr}\left(\frac{E}{V}\right) = \frac{1}{2}\Delta\rho\Omega^2 r - \frac{2\gamma}{r^2} = 0, \text{ which occurs when } r = \left(\frac{4\gamma}{\Delta\rho\Omega^2}\right)^{1/3}. \text{ Now } r = \left(\frac{V}{\pi L}\right)^{1/2} = \left(\frac{4\gamma}{\Delta\rho\Omega^2}\right)^{1/3} \Rightarrow$$

Vonnegut's Formula: $\gamma = \frac{1}{4\pi^{3/2}} \Delta \rho \Omega^2 \left(\frac{V}{L}\right)^{3/2}$ allows inference of γ from *L*, useful technique for small γ as it avoids difficulties associated with fluid-solid contact. Note: *r* grows with σ and decreases with Ω .

7.2 Rolling drops

Figure 7.4: A liquid drop rolling down an inclined plane.

(Aussillous and Quere 2003) Energetics: for steady descent at speed V, $MgV\sin\theta$ =Rate of viscous dissipation= $2\mu \int_{V_d} (\nabla u)^2 dV$, where V_d is the dissipation zone, so this sets $V \Rightarrow \Omega = V/R$ is the angular speed. Stability characteristics different: bioconcave oblate ellipsoids now stable.

357 Interfacial Phenomena Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.