
6. More on Fluid statics

Last time, we saw that the balance of curvature and hydrostatic pressures requires
−ρgη = σ∇ · n = σ −ηxx
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Figure 6.1: Calculating the shape and maximal rise height of a static meniscus.

Maximal rise height: At z = h we have θ = θe, so from (6.1) 1ρgh2 = σ(12 − sin θe), from which

h =
√
2ℓc(1− sin θe)

1/2
where ℓc =

√

σ/ρg (6.2)

Alternative perspective: Consider force balance on the meniscus.
Horizontal force balance:

1
σ sin θ + ρgz2 = σ (6.3)
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isplaced above z = 0.

Note: σ cos θe = weight of displaced fluid is +/− according to whether θe is smaller or larger than π .2
Floating Bodies Without considering interfacial effects, one anticipates that heavy things sink and light
things float. This doesn’t hold for objects small relative to the capillary length.
Recall: Archimedean force on a submerged body FA =

∫
pndS = ρgVB .S

In general, the hydrodynamic force acting on a body in a fluid
Fh =

∫
T · ndS, where T = pI+ 2µE = pI for static fluid.

S ∫
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Here Fh = − pndS =
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−ρg ∇z dV by divergence theorem. This is equal to
V

−ρg dV ẑ = −ρgV ẑ = weight of displaced flu

∫

id. The archimedean force can thus support weight
V

of a body Mg = ρBgV if ρF > ρB (fluid density larger than body density); otherwise, it sinks.
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6.1. Capillary forces on floating bodies Chapter 6. More on Fluid statics 

Figure 6.2: A heavy body may be supported on a fluid surface by a combination of buoyancy and surface 
tension. 

6.1 Capillary forces on floating bodies 

• arise owing to interaction of the menisci of floating bodies 

• attractive or repulsive depending on whether the menisci are of the same or opposite sense 

• explains the formation of bubble rafts on champagne 

• explains the mutual attraction of Cheerios and their attraction to the walls 

• utilized in technology for self-assembly on the microscale 

Capillary attraction Want to calculate the attractive force between two floating bodies separated by 
a distance R. Total energy of the system is given by 

f 1 
∞ 1 h(x) 

Etot = σ dA(R) + dx ρgzdz (6.5) 
−∞ 0 

where the first term in (6.5) corresponds to the total surface energy when the two bodies are a distance 
R apart, and the second term is the total gravitational potential energy of the fluid. Differentiating (6.5) 
yields the force acting on each of the bodies: 

dEtot(R)
F (R) = − (6.6) 

dR 

Such capillary forces are exploited by certain water walking insects to climb menisci. By deforming the 
free surface, they generate a lateral force that drives them up menisci (Hu & Bush 2005). 
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