4. Young's Law with Applications

Young's Law: what is the equilibrium contact angle θ_e ? Horizontal force balance at contact line: $\gamma_{LV} \cos \theta_e = \gamma_{SV} - \gamma_{SL}$

$$\cos \theta_e = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}} = 1 + \frac{S}{\gamma_{LV}} \quad (Young \ 1805) \tag{4.1}$$

Note:

- 1. When $S \ge 0$, $\cos \theta_e \ge 1 \Rightarrow \theta_e$ undefined and spreading results.
- Vertical force balance not satisfied at contact line ⇒ dimpling of soft surfaces.
 E.g. bubbles in paint leave a circular rim.
- 3. The static contact angle need not take its equilibrium value \Rightarrow there is a finite range of possible static contact angles.

Back to Puddles: Total energy:

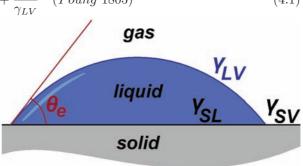


Figure 4.1: Three interfaces meet at the contact line.

$$E = \underbrace{(\gamma_{SL} - \gamma_{SV})A + \gamma_{LV}A}_{surface\ energy} + \underbrace{\frac{1}{2}\rho gh^2 A}_{gravy\ pot\ energy} = -S\frac{V}{h} + \frac{1}{2}\rho gVh \tag{4.2}$$

Minimize energy w.r.t. $h: \frac{dE}{dh} = SV\frac{1}{h^2} + \frac{1}{2}\rho gV = 0$ when $-S/h^2 = \frac{1}{2}\rho g \Rightarrow h_0 = \sqrt{\frac{-2S}{\rho g}} = 2\ell_c \sin \frac{\theta_c}{2}$ gives puddle depth, where $\ell_c = \sqrt{\sigma/\rho g}$.

Capillary Adhesion: Two wetted surfaces can stick together with great strength if $\theta_e < \pi/2$, e.g. Fig. 4.2.

Laplace Pressure:

$$\begin{split} \Delta P &= \sigma \left(\frac{1}{R} - \frac{\cos \theta_e}{H/2} \right) \approx -\frac{2\sigma \cos \theta_e}{H} \\ \text{i.e. low } P \text{ inside film provided } \theta_e < \pi/2. \\ \text{If } H \ll R, \ F &= \pi R^2 \frac{2\sigma \cos \theta_e}{H} \text{ is the attractive force between the plates.} \end{split}$$

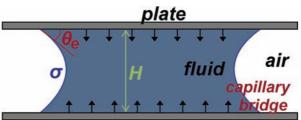


Figure 4.2: An oil drop forms a capillary bridge between two glass plates.

E.g. for H_2O , with R = 1 cm, $H = 5 \ \mu m$ and $\theta_e = 0$, one finds $\Delta P \sim 1/3$ atm and an adhesive force $F \sim 10N$, the weight of 1l of H_2O .

Note: Such capillary adhesion is used by beetles in nature.

4.1 Formal Development of Interfacial Flow Problems

Governing Equations: Navier-Stokes. An incompressible, homogeneous fluid of density ρ and viscosity $\mu = \rho \nu$ (μ is dynamic and ν kinematic viscosity) acted upon by an external force per unit volume **f** evolves according to

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \tag{4.3}$$

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) = -\boldsymbol{\nabla} p + \mathbf{f} + \mu \nabla^2 \mathbf{u} \qquad (Linear momentum conservation) \qquad (4.4)$$

This is a system of 4 equations in 4 unknowns (u_1, u_2, u_3, p) . These N-S equations must be solved subject to appropriate BCs.

Fluid-Solid BCs: "No-slip": $\mathbf{u} = \mathbf{U}_{solid}$.

E.g.1 Falling sphere: u = U on sphere surface, where U is the sphere velocity.

E.g.2 Convection in a box: $\mathbf{u} = 0$ on the box surface.

But we are interested in flows dominated by interfacial effects. Here, in general, one must solve N-S equations in 2 domains, and match solutions together at the interface with appropriate BCs. Difficulty: These interfaces are free to move \Rightarrow Free boundary problems.

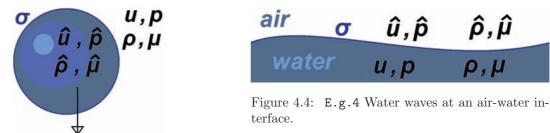


Figure 4.3: E.g.3 Drop motion within a fluid.

Continuity of Velocity at an interface requires that $\mathbf{u} = \hat{\mathbf{u}}$.

And what about p ? We've seen $\Delta p \sim \sigma/R$ for a static bubble/drop, but to answer this question in general, we must develop stress conditions at a fluid-fluid interface.

Recall: Stress Tensor. The state of stress within an incompressible Newtonian fluid is described by the stress tensor: $\mathbf{T} = -p\mathbf{I} + 2\mu\mathbf{E}$ where $\mathbf{E} = \frac{1}{2}\left[(\nabla \boldsymbol{u}) + (\nabla \boldsymbol{u})^T\right]$ is the deviatoric stress tensor. The associated hydrodynamic force per unit volume within the fluid is $\nabla \cdot \boldsymbol{T}$.

One may thus write N-S eqns in the form: $\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \mathbf{T} + \mathbf{f} = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}$. Now: $T_{ij} = \text{force } / \text{ area acting in the } \mathbf{e}_j$ direction on a surface with a normal \mathbf{e}_i .

Note:

- 1. normal stresses (diagonals) T_{11} , T_{22} , T_{33} involve both p and u_i
- 2. tangential stresses (off-diagonals) T_{12} , T_{13} , etc., involve only velocity gradients, i.e. viscous stresses
- 3. T_{ij} is symmetric (Newtonian fluids)
- 4. $\mathbf{t}(\mathbf{n}) = \mathbf{n} \cdot \mathbf{T} = \text{stress vector acting on a surface}$ with normal \mathbf{n}

E.g. Shear flow. Stress in lower boundary is tangential. Force / area on lower boundary:

 $T_{yx} = \mu \frac{\partial u_x}{\partial y}|_{y=0} = \mu k$ is the force/area that acts on y-surface in x-direction.

Note: the form of \mathbf{T} in arbitrary curvilinear coordinates is given in the Appendix of Batchelor.

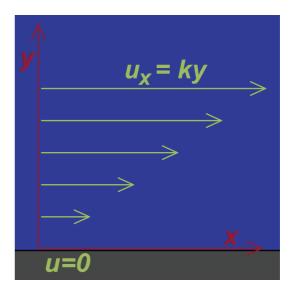


Figure 4.5: Shear flow above a rigid lower boundary.

357 Interfacial Phenomena Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.