3. Wetting

Puddles. What sets their size?

Knowing nothing of surface chemistry, one anticipates that Laplace pressure balances hydrostatic pressure if $\sigma/H \ge \rho gH \Rightarrow H < \ell_c = \sqrt{\sigma/\rho g} = \text{capillary length.}$

Note:

- 1. Drops with $R < \ell_c$ remain heavily spherical
- 2. Large drops spread to depth $H \sim \ell_c$ so that Laplace + hydrostatic pressures balance at the drop's edge. A volume V will thus spread to a radius R s.t. $\pi R^2 \ell_c = V$, from which $R = (V/\pi \ell_c)^{1/2}$.
- 3. This is the case for H_2O on most surfaces, where a contact line exists.

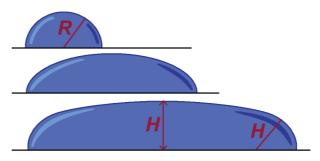


Figure 3.1: Spreading of drops of increasing size.

Note: In general, surface chemistry can dominate and one need not have a contact line.

More generally, wetting occurs at fluid-solid contact. Two possibilities exist: partial wetting or total wetting, depending on the surface energies of the 3 interfaces ($\gamma_{LV}, \gamma_{SV}, \gamma_{SL}$).

Now, just as $\sigma = \gamma_{LV}$ is a surface energy per area or tensile force per length at a liquid-vapour surface, γ_{SL} and γ_{SV} are analogous quantities at solid-liquid and solid-vapour interfaces. The degree of wetting determined by *spreading parameters*:

$$S = [E_{substrate}]_{dry} - [E_{substrate}]_{wet} = \gamma_{SV} - (\gamma_{SL} + \gamma_{LV})$$
(3.1)

where only γ_{LV} can be easily measured.

Total Wetting: S > 0, $\theta_e = 0$ liquid spreads completely in order to minimize its surface energy. e.g. silicon on glass, water on clean glass.

Note: Silicon oil is more likely to spread than H_2O since $\sigma_w \sim 70 \ dyn/cm > \sigma_{s.o.} \sim 20 \ dyn/cm$. Final result: a film of nanoscopic thickness resulting from competition between molecular and capillary forces.

Partial wetting: S < 0, $\theta_e > 0$. In absence of g, forms a spherical cap meeting solid at a contact angle θ_e . A liquid is "wetting" on a particular solid when $\theta_e < \pi/2$, non-wetting or weakly wetting when $\theta_e > \pi/2$. For H_2O , a surface is hydrophilic if $\theta_e < \pi/2$, hydrophobic if $\theta_e > \pi/2$ and superhydrophobic if $\theta_e > 5\pi/6$.

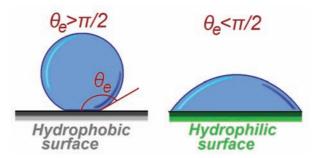


Figure 3.2: The same water drop on hydrophobic and hydrophilic surfaces.

Note: if g = 0, drops always take the form of a spherical cap \Rightarrow flattening indicates the effects of gravity.

357 Interfacial Phenomena Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.