15. Contact angle hysteresis, Wetting of textured solids

Recall: In Lecture 3, we defined the equilibrium contact angle θ_e , which is prescribed by Young's Law: $\cos \theta_e = (\gamma_{SV} - \gamma_{SL}) / \gamma$ as deduced from the horizontal force balance at the contact line. Work done by a contact line moving a distance dx:

Figure 15.1: Calculating the work done by moving a contact line a distance dx.

$$dW = \underbrace{\left(\gamma_{SV} - \gamma_{SL}\right)dx}_{contact \ line \ motion} - \underbrace{\gamma\cos\theta_e dx}_{from \ creating \ new \ interface}$$
(15.1)

In equilibrium: dW = 0, which yields Young's Law. It would be convenient if wetting could be simply characterized in terms of this single number θ_e . Alas, there is:

15.1 Contact Angle Hysteresis

For a given solid wetting a given liquid, there is a range of possible contact angles: $\theta_r < \theta < \theta_a$, i.e. the contact angle lies between the retreating and advancing contact angles; θ_r and θ_a , respectively. That is, many θ values may arise, depending on surface, liquid, roughness and history.

Filling a drop

- begin with a drop in equilibrium with $\theta = \theta_e$
- fill drop slowly with a syringe
- θ increases progressively until attaining θ_a , at which point the contact line advances

Draining a drop

- begin with a drop in equilibrium with $\theta = \theta_e$
- drain drop slowly with a syringe
- θ decreases progressively until attaining θ_r , at which point the contact line retreats

Origins: Contact line pinning results from surface heterogeneities (either chemical or textural), that present an energetic impediment to contact line motion.

The pinning of a contact line on impurities leads to increased interfacial area, and so is energetically costly. Contact line motion is thus resisted.

Contact Line Pinning at Corners

A finite range of contact angles can arise at a corner $\theta_1 < \theta < \pi - \phi + \theta_1$; thus, an advancing contact line will generally be pinned at corners. Hence surface texture increases contact angle hysteresis.

Figure 15.2: Pinning of a contact line retreating from left to right due to surface impurities.

Figure 15.3: A range of contact angles is possible at a corner.

Manifestations of Contact Angle Hysteresis

I. Liquid column trapped in a capillary tube.

 θ_2 can be as large as θ_a ; θ_1 can be as small as θ_r . In general $\theta_2 > \theta_1$, so there is a net capillary force available to support the weight of the slug.

$$\underbrace{\frac{2\pi R\sigma(\cos\theta_1 - \cos\theta_2)}{\max \text{ contact force}}}_{\text{max contact force}} = \underbrace{\rho g\pi R^2 H}_{\text{weight}}$$
(15.2)

Force balance requires:

$$\frac{2\sigma}{R}\left(\cos\theta_1 - \cos\theta_2\right) = \rho g H \tag{15.3}$$

Thus, an equilibrium is possible only if $\frac{2\sigma}{R} (\cos \theta_r - \cos \theta_a) > \rho g H$.

Note: if $\theta_a = \theta_r$ (no hysteresis), there can be no equilib- of gravity. rium.

Figure 15.4: A heavy liquid column may be trapped in a capillary tube despite the effects of gravity.

II. Raindrops on window panes (Dussan+Chow 1985)

If $\theta_1 = \theta_2$ then the drop will fall due to unbalanced gravitational force. θ_2 can be as large as θ_a , θ_1 as small as θ_r . Thus, the drop weight may be supported by the capillary force associated with the contact angle hysteresis.

Note: $F_g \sim \rho R^3 g$, $F_c \sim 2\pi R\sigma(\cos\theta_1 - \cos\theta_2)$ which implies that $\frac{F_G}{F_C} \sim \frac{\rho g R^2}{\sigma} \equiv \mathcal{B}o$. In general, drops on a window pane will increase in size by accretion until $\mathcal{B}o > 1$ and will then roll downwards.

15.2 Wetting of a Rough Surface

Consider a fluid placed on a rough surface. Define: roughness parameters

r

Figure 15.5: A raindrop may be pinned on a window pane.

$$= \frac{\text{Total Surface Area}}{\text{Projected Surf. Area}} > 1 \qquad \phi_S = \frac{\text{Area of islands}}{\text{Projected Area}} < 1 \tag{15.4}$$

The change in surface energy associated with the fluid front advancing a distance dz:

$$dE = (\gamma_{SL} - \gamma_{SV}) \left(r - \phi_S\right) dz + \gamma (1 - \phi_S) ds$$
(15.5)

Spontaneous Wetting (demi-wicking) arises when dE < 0i.e. $\cos \theta_e = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma} > \frac{1 - \phi_S}{r - \phi_S} \equiv \cos \theta_c$, i.e. when $\theta_e < \theta_C$. Note:

- 1. can control θ_e with chemistry, r and ϕ_S with geometry, so can prescribe wettability of a solid.
- 2. if $r \gg 1$, $\theta_C = \frac{\pi}{2}$, so one expects spontaneous wicking when $\theta_e < \pi/2$
- 3. for a flat surface, $r \sim 1$, $\theta_c = 0$: wicking requires $\cos \theta_e > 1$ which never happens.
- 4. most solids are rough (except for glass which is smooth down to ~ 5 Å).

Wetting of Rough Solids with Drops

Consider a drop placed on a rough solid. Define: Effective contact angle θ^* is the contact angle apparent on a rough solid, which need not correspond to θ_e . Observation:

- $\theta^* < \theta_e$ when $\theta_e < \pi/2$ (hydrophilic)
- $\theta^* > \theta_e$ when $\theta_e > \pi/2$ (hydrophobic).

The intrinsic hydrophobicity or hydrophilicity of a solid, as prescribed by θ_e , is **enhanced** by surface roughening.

Figure 15.6: A drop wetting a rough solid has an effective contact angle θ^* that is generally different from its equilibrium value θ_e .

15.3 Wenzel State (1936)

A Wenzel state arises when the fluid impregnates the rough solid. The change in wetting energy associated with a fluid front advancing a distance dx (see Fig. 15.7) is

$$dE_W = r(\gamma_{SL} - \gamma_{SV})dx + \gamma\cos\theta^*dx \qquad (15.6)$$

If r = 1 (smooth surface), Young's Law emerges. If r > 1: $\cos \theta^* = r \cos \theta_e$

Note:

- 1. wetting tendencies are amplified by roughening, e.g. for hydrophobic solid ($\theta_e > \pi/2$, $\cos \theta_e < 0 \Rightarrow \theta_e \gg \pi/2$ for large r)
- 2. for $\theta_e < \theta_c$ (depends on surface texture) \Rightarrow demi-wicking / complete wetting
- 3. Wenzel state breaks down at large $r \Rightarrow$ air trapped within the surface roughness \Rightarrow Cassie State

15.4 Cassie-Baxter State

In a Cassie state, the fluid does not impregnate the rough solid, leaving a trapped vapour layer. A fluid placed on the rough surface thus sits on roughness elements (e.g. pillars or islands), and the change of energy associated with its front advancing a distance dx is $dE_c = \phi_S (\gamma_{SL} - \gamma_{SV}) dx + (1 - \phi_S) \gamma dx + \gamma \cos \theta^* dx$

(15.7)

For equilibrium $(dE_c/dx = 0)$, we require:

$$\cos\theta^* = -1 + \phi_S + \phi_S \cos\theta_e \tag{15.8}$$

Note:

- 1. as pillar density $\phi_S \to 0$, $\cos \theta^* \to -1$, i.e. $\theta^* \to \pi$
- 2. drops in a Cassie State are said to be in a "fakir state".
- 3. contact angle hysteresis is greatly increased in the Wenzel state, decreased in the Cassie.
- 4. the maintenance of a Cassie state is key to water repellency.

Crossover between Wenzel and Cassie states:

Figure 15.7: The wetting of a rough solid in a Wenzel state.

Figure 15.8: The wetting of a rough solid in a Cassie-Baxter state.

Summary:

Hydrophilic: Wenzel's Law ceases to apply at small θ_e when demi-wicking sets in, and the Cassie state emerges.

Hydrophobic: Discontinuous jump in θ^* as θ_e exceeds $\pi/2 \Rightarrow$ Cassie state. Jump is the largest for large roughness (small ϕ_S)

Historical note:

- 1. early studies of wetting motivated by insecticides
- 2. chemists have since been trying to design superhydrophobic (or oliophobic) surfaces using combinations of chemistry and texture
- 3. recent advances in microfabrication have achieved $\theta^* \sim \pi$, $\Delta \theta \sim 0$ (e.g. Lichen surface *McCarthy*)

357 Interfacial Phenomena Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.