
14. Instability of Superposed Fluids
 

Figure 14.1: Wind over water: A layer of fluid of density ρ+ moving with relative velocity V over a layer 
of fluid of density ρ− . 

Define interface: h(x, y, z) = z − η(x, y) = 0 so that ∇h = (−ηx,−ηy, 1). 
The unit normal is given by 

∇h (−ηx,−ηy, 1) 
n̂ = =	 (14.1) |∇h| ( )1/2 

ηx 
2 + ηy 

2 + 1

Describe the fluid as inviscid and irrotational, as is generally appropriate at high Re. 
Basic state: η = 0 , u = ∇φ , φ = 

2
Vx for z±.∓ 1 

Perturbed state: φ = ∓ 1Vx + φ± in z±, where φ± is the perturbation field. 2

Solve 
∇ · u = ∇2φ± = 0 (14.2) 

subject to BCs: 

1.	 φ± → 0 as z → ±∞ 

∂η 2.	 Kinematic BC: = u · n,∂t 
where 

( )
1 1 ∂φ± ∂φ± ∂φ± 

u = ∇ ∓ Vx + φ± = ∓ V x̂+ x̂+ ŷ + ẑ (14.3) 
2 2 ∂x ∂y ∂z 

from which ( )
∂η 1 ∂φ± ∂φ± ∂φ± 

= ∓ V + (−ηx) + (−ηy) +	 (14.4) 
∂t 2 ∂x ∂y ∂z 

Linearize: assume perturbation fields η, φ± and their derivatives are small and therefore can neglect 
their products. 

∂φ±Thus η̂ ≈ (−ηx,−ηy, 1) and ∂η = ± 1V ηx + ⇒∂t 2 ∂z 

∂φ± ∂η 1 ∂η 
= ∓ V on z = 0	 (14.5) 

∂z ∂t 2 ∂x 

3.	 Normal Stress Balance: p− − p+ = σ∇ · n on z = η.
 
Linearize: p− − p+ = −σ (ηxx + ηyy) on z = 0.
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We now deduce p± from time-dependent Bernoulli: 

ρ 
∂φ 1 

ρu2 + p+ ρgz = f(t) (14.6) + 
∂t 2 

2 1 ∂φ±where u = 
4
V 2 ∓ V ∂x + H.O.T. 

Linearize: ( )
∂φ± 1 ∂φ±

ρ± + ρ± ∓V + p± + ρ±gη = G(t) (14.7) 
∂t 2 ∂x 

so 

∂φ± ∂φ− V ∂φ− ∂φ+ 
p− − p+ = (ρ+ − ρ−)gη + (ρ+ − ρ− ) + (ρ− + ρ+ ) = −σ(ηxx + ηyy) (14.8) 

∂t ∂t 2 ∂x ∂x 

is the linearized normal stress BC. Seek normal mode (wave) solutions of the form 

iαx+iβy+ωt η = η0e (14.9) 

∓kz iαx+iβy+ωt φ± = φ0±e e (14.10) 

where ∇2φ± = 0 requires k2 = α2 + β2 . 
∂φ± ∂η V ∂η ∓ 1Apply kinematic BC: = at z = 0 ⇒∂z ∂t 2 ∂x 

1 ∓kφ0± = ωη0 ∓ iαV η0 (14.11) 
2 

Normal stress BC: 

k2ση0 = −g(ρ− − ρ+)η0 + ω(ρ+φ0+ − ρ−φ0−) + 
1 
iαV (ρ+φ0+ + ρ−φ0−) (14.12) 

2
 

Substitute for φ0± from (14.11):
 

[ ] [ ]
1 1 1 1 1 −k3σ = ω ρ+(ω − iαV ) + ρ−(ω + iαV ) + gk(ρ− − ρ+) + iαV ρ+(ω − iαV ) + ρ−(ω + iαV )
2 2 2 2 2 

so ( 
ρ− − ρ+ 

) 
1 2ω2 + iαV ω − α2V + k2C0

2 = 0 (14.13) 
ρ− + ρ+ 4 

( 
ρ−−ρ+ 

) 
g σwhere C2 ≡ + k.0 ρ−+ρ+ k ρ−+ρ+ 

Dispersion relation: we now have the relation between ω and k 

1 
( 
ρ+ − ρ− 

) [ 
ρ−ρ+ 2 

]1/2 

ω = i k · V ± (k · V ) − k2C2 (14.14) 02 ρ− + ρ+ (ρ− + ρ+)2 

where k = (α, β), k2 = α2 + β2 .
 
The system is UNSTABLE if Re (ω) > 0, i.e. if
 

ρ+ρ− 2 
C2(k · V ) > k2 (14.15) 

ρ− + ρ+
0 

Squires Theorem:
 
Disturbances with wave vector k = (α, β) parallel to V are most unstable. This is a general property of
 
shear flows.
 

We proceed by considering two important special cases, Rayleigh-Taylor and Kelvin-Helmholtz instability.
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14.1 Rayleigh-Taylor Instability 

We consider an initially static system in which heavy fluid overlies light fluid: ρ+ > ρ−, V = 0. Via 
(14.15), the system is unstable if 

ρ− − ρ+ g σ 
C2 + k < 0 (14.16) 0 = 

ρ+ρ− k ρ− + ρ+ 

σk2 
4π2σi.e. if ρ+ − ρ− > g = gλ2 . 

J 
σThus, for instability, we require: λ > 2πλc where λc = is the capillary length. 

Δρg 

Heuristic Argument: 
Change in Surface Energy: 

[f λ 
] 

1ΔES = σ · Δl = σ
0 
ds− λ = 

4
σǫ2k2λ. 

arc length 
Figure 14.2: The base state and the per-Change in gravitational potential energy: 

f λ ( ) turbed state of the Rayleigh-Taylor system, = − 1ρg h2 − h2 dx = − 1ρgǫ2λ.ΔEG 0 2 0 4 heavy fluid over light. When is the total energy decreased?
 
When ΔEtotal = ΔES + ΔEG < 0, i.e. when ρg > σk2 ,
 
so λ > 2πlc.
 
The system is thus unstable to long λ.
 
Note:
 

1. The system is stabilized to small λ disturbances by
 
σ
 

2. The system is always unstable for suff. large λ 

3. In a finite container with width smaller than 2πλc,
 
the system may be stabilized by σ.
 

4. System may be stabilized by temperature gradients
 
since Marangoni flow acts to resist surface defor
mation. E.g. a fluid layer on the ceiling may be
 
stabilized by heating the ceiling.
 

Figure 14.3: Rayleigh-Taylor instability may 
be stabilized by a vertical temperature gradi
ent. 

MIT OCW: 18.357 Interfacial Phenomena 57 Prof. John W. M. Bush 



14.2. Kelvin-Helmholtz Instability Chapter 14. Instability of Superposed Fluids 

14.2 Kelvin-Helmholtz Instability 

We consider shear-driven instability of a gravitationally stable base state. Specifically, ρ− ≥ ρ+ so the 
system is gravitationally stable, but destabilized by the shear. 

2 2Take k parallel to V , so (V · k) = k2V and the instability criterion becomes: 

g2 + σk (14.17) ρ−ρ+V > (ρ− − ρ+)
k 

Equivalently, 

2 λ 2π 
+ σ (14.18) ρ−ρ+V > (ρ− − ρ+) g

2π λ 

Note: 
Figure 14.4: Kelvin-Helmholtz instability: a gravi

1. System stabilized to short λ disturbances by tationally stable base state is destabilized by shear. 
surface tension and to long λ by gravity. 

2. For any given λ (or k), one can find a critical
 
V that destabilizes the system.
 

Marginal Stability Curve: 

( 
ρ− − ρ+ g 1 

)1/2 

V (k) = + σk (14.19) 
ρ−ρ+ k ρ−ρ+ 

dV d 2V (k) has a minimum where = 0, i.e. V = dk dk
0. J 
This implies − Δρ + σ = 0 ⇒ kc = Δρg = k2 σ 
1 .lcap √

2The corresponding Vc = V (kc) = ρ−ρ+ 
Δρgσ is the min

imal speed necessary for waves. 

Figure 14.5: Fluid speed V (k) required for 
the growth of a wave with wavenumber k. 

E.g. Air blowing over water: (cgs) √ 
2 2V = 1 · 103 · 70 ⇒ Vc ∼ 650cm/s is the mini-c 1.2·10−3 

mum wind speed required to generate waves. 
J 

1·103 −1These waves have wavenumber kc = ≈ 3.8 cm , so λc = 1.6cm. They thus correspond to capillary 
70 

waves. 
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