
13. Fluid Sheets 

13.1 Fluid Sheets: shape and stability 

The dynamics of high-speed fluid sheets was first considered by Savart (1833) after his early work on 
electromagnetism with Biot, and was subsequently examined by Rayleigh (1879), then in a series of 
papers by Taylor (Proc. Roy. Soc., 1959 ). They have recently received a great deal of attention owing to 
their relevance in a number of spray atomization processes. Such sheets may be generated from a variety 
of source conditions, for example, the collision of jets on rigid impactors, and jet-jet collisions. There 
is generally a curvature force acting on the sheet edge which acts to contain the fluid sheet. For a 2D 
(planar) sheet, the magnitude of this curvature force is given by 

1 
F c = σ (∇ · n)ndl (13.1) 

C 

Using the first Frenet-Serret equation (Lecture 2, Appendix B), 

dt 
(∇ · n)n = (13.2) 

dl 

thus yields 1
dt 

F c = σ dl = σ (t1 − t2) = 2σx (13.3) 
C dl 

There is thus an effective force per unit length 2σ along the length of the sheet rim acting to contain the 
rim. We now consider how this result may be applied to compute sheet shapes for three distinct cases: i) 
a circular sheet, ii) a lenticular sheet with unstable rims, and iii) a lenticular sheet with stable rims. 
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Figure 13.1: A circular fluid sheet generated by the impact of a water jet on a circular impactor. The 
impacting circle has a diameter of 1 cm. 

13.2 Circular Sheet 

We consider the geometry considered in Savart’s original experiment. A vertical fluid jet strikes a small 
horizontal circular impactor. If the flow rate is sufficiently high that gravity does not influence the sheet 
shape, the fluid is ejected radially, giving rise to a circular free fluid sheet (Fig. 13.1). 

ρU2DFor We = > 1000, the circular sheet is subject to the flapping instability. We thus consider 
σ 

UR ∼ 30·10 U2 
We < 1000, for which the sheet is stable. Scaling: Re = ∼ 3·104 ≫ 1. Fr = 

2 
∼ 30 ∼ 0.1

ν 0.01 gR 103 
·10 

so inertia dominates gravity.
 
The sheet radius is prescribed by a balance of radial forces; specifically, the inertial force must balance
 
the curvature force:
 

ρu2h = 2σ (13.4) 

Continuity requires that the sheet thickness h depend on the speed u, jet flux Q and radius r as 

Q 1 
h(r) = ∼ (13.5) 

2πru r 

Experiments (specifically, tracking of particles suspended within the sheet) indicate that the sheet speed u 
is independent of radius; consequently, the sheet thickness decreases as 1/r. Substituting the form (13.5) 
for h into the force balance (13.4) yields the sheet radius, or so-called Taylor radius: 

ρQu 
RT = (13.6) 

4πσ 

The sheet radius increases with source flux and sheet speed, but decreases with surface tension. We note 
that the fluid proceeds radially to the sheet edge, where it accumulates until going unstable via a modified 
Rayleigh-Plateau instability, often referred to as the Rayleigh-Plateau-Savart instability, as it was first 
observed on a sheet edge by Savart. 
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13.3 Lenticular sheets with unstable rims (Taylor 1960)
 

Figure 13.2: A sheet generated by the collision of water jets at left. The fluid streams radially outward in 
a thinning sheet; once the fluid reaches the sheet rim, it is ejected radially in the form of droplets. From 
G.I. Taylor (1960). 

We now consider the non-axisymmetric fluid , such as may be 
formed by the oblique collision of water jets (see Fig. 13.2), a ge
ometry originally considered by Taylor (1960). Fluid is ejected 
radially from the origin into a sheet with flux distribution given 
by Q(θ), so that the volume flux flowing into the sector between 
θ and θ + dθ is Q(θ)dθ. As in the previous case of the circular 
sheet, the sheet rims are unstable, and fluid drops are contin
uously ejected therefrom. The sheet shape is computed in a 
similar manner, but now depends explicitly on the flux distri
bution within the sheet, Q(θ). The normal force balance on the 
sheet edge now depends on the normal component of the sheet 
speed, un: 

ρu2 (θ)h(θ) = 2σ (13.7) n

The sheet thickness is again prescribed by (13.5), but now Q = 
Q(θ), so the sheet radius R(θ) is given by the Taylor radius 

ρu2 Q(θ)nR(θ) = (13.8) 
4πσu 

Computing sheet shapes thus relies on either experimental mea
surement or theoretical prediction of the flux distribution Q(θ) 
within the sheet. 

13.4 Lenticular sheets with stable rims 

In a certain region of parameter space, specifically, with 
fluids more viscous than water, one may encounter fluid sheets with stable rims (see www
math.mit.edu/∼bush/bones.html). The force balance describing the sheet shape must change accordingly. 
When rims are stable, fluid entering the rim proceeds along the rim. As a result, there is a centripetal 
force normal to the fluid rim associated with flow along the curved rim that must be considered in order 
to correctly predict the sheet shapes. 

Figure 13.3: The “Fluid fishbone” 
formed by the collision of two jets of 
a glycerine-water solution. Bush & 
Hasha (2004). 
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The relevant geometry is presented in Fig. 13.4. 
r(θ) is defined to be the distance from the origin 
to the rim centreline, and un(θ) and ut(θ) the nor
mal and tangential components of the fluid velocity 
in the sheet where it contacts the rim. v(θ) is de
fined to be the velocity of flow in the rim, R(θ) 
the rim radius, and Ψ(θ) the angle between the po
sition vector r and the local tangent to the rim 
centreline. Finally, rc(θ) is defined to be the ra
dius of curvature of the rim centreline, and s the 
arc length along the rim centreline. The differential 
equations governing the shape of a stable fluid rim 
bounding a fluid sheet may be deduced by consid
eration of conservation of mass in the rim and the 
local normal and tangential force balances at the 
rim. 

For a steady sheet shape, continuity requires 
that the volume flux from the sheet balance the 
tangential gradient in volume flux along the rim: 

∂ (
0 = unh− vπR2

) 
(13.9) 

∂s 

The normal force balance requires that the curvature force associated with the rim’s surface tension 
balance the force resulting from the normal flow into the rim from the fluid sheet and the centripetal force 
resulting from the flow along the curved rim: 

Figure 13.4: A schematic illustration of a fluid sheet 
bound by stable rims. 

2ρπR2v
ρu2 h+ = 2σ (13.10) n rc 

Note that the force balance (13.7) appropriate for sheets with unstable rims is here augmented by the 
centripetal force. The tangential force balance at the rim requires a balance between tangential gradients 
in tangential momentum flux, tangential gradients in curvature pressure, viscous resistance to stretching 
of the rim, and the tangential momentum flux arriving from the sheet. For most applications involving 
high-speed sheets, the Reynolds number characterizing the rim dynamics is sufficiently large that viscous 
resistance may be safely neglected. Moreover, the curvature term ∇ · n̂ generally depends on θ; however, 
accurate to O(R/rc), we may use ∇ · n̂ = 1/R. One thus obtains: 

∂ (
2
) πR2σ ∂ 

( 
1
)

πR2 v = hutun − . (13.11) 
∂s ρ ∂s R

Equations (13.9)-(13.11) must be supplemented by the continuity relation, 

Q(θ)
h(r, θ) = (13.12) 

u0r 

in addition to a number of relations that follow directly from the system geometry: 

1 sinΨ 
( 
∂Ψ 

)

un = u0 sinΨ , uT = u0 cosΨ , = + 1 (13.13) 
rc r ∂θ 

The system of equations (13.9-13.13) may be nondimensionalized, and reduce to a set of coupled ordinary 
equations in the four variables r(θ), v(θ), R(θ) and Ψ(θ). Given a flux distribution, Q(θ), the system may 
be integrated to deduce the sheet shape. 
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13.5 Water Bells 

All of the fluid sheets considered thus far have been confined to a plane. In §13.1, we considered circular 
sheets generated from a vertical jet striking a horizontal impactor. The sheet remains planar only if 
the flow is sufficiently fast that the fluid reaches its Taylor radius before sagging substantially under the 
influence of gravity. Decreasing the flow rate will make this sagging more pronounced, and the sheet will 
no longer be planar. While one might expect the sheet to fall along a parabolic trajectory, the toroidal 
curvature of the bell induces curvature pressures that act to close the sheet. Consequently, the sheet may 
close upon itself, giving rise to a water bell, as illustrated in Fig. 13.5. A recent review of the dynamics 
of water bells has been written by Clanet (Ann.Rev.). We proceed by outlining the theory required to 
compute the shapes of water bells. 

We consider a fluid sheet extruded radially at a speed u0 and subsequently sagging under the influence 
of a gravitational field g = −gẑ. The inner and outer sheet surfaces are characterized by a constant 
surface tension σ. The sheet has constant density ρ and thickness t(r, z). Q is the total volume flux in 
the sheet. The characteristic Re is assumed to be sufficiently high so that the influence of viscosity is 
negligible. 

We define the origin to be the center of the impact plate; r and z are, respectively, the radial and 
vertical distances from the origin. u is the sheet speed, and φ the angle made between the sheet and the 
vertical. rc is the local radius of curvature of a meridional line, and s the arc length along a meridional 
line measured from the origin. Finally, ΔP is the pressure difference between the outside and inside of 
the bell as may be altered experimentally. 

Flux conservation requires that 

Q = 2πrtu	 (13.14) 

while Bernoulli’s Theorem indicates that 

2 2 u	 = u + 2gz (13.15) 
0 

The total curvature force acting normal to the bell surface 
is given by 

( 
1 

)
cosφ 

2σ∇ · n = 2σ + (13.16) 
rc r 

Note that the factor of two results from there being two Figure 13.5: A water bell produced by the 
free surfaces. The force balance normal to the sheet thus impact of a descending water jet on a solid 
takes the form: impactor. The impactor radius is 1 cm. Fluid 

is splayed radially by the impact, then sags 
2σ 2σ cosφ	 ρtu2 

+ − ΔP + ρgt sinφ− = 0 (13.17) under the influence of gravity. The sheet may 
rc r rc close on itself owing to the azimuthal curva

ture of the bell. Equations (13.14), (13.15) and (13.17) may be appropri
ately nondimensionalized and integrated to determine the
 
shape of the bell.
 
Note:
 

•	 the bell closes due to the out-of-plane curvature 

•	 the influence of g is reflected in top-bottom asymmetry. Note that g is not significant in Fig. 13.5. 
The relevant control parameter is Fr = INERTIA/GRAVITY = U2/gL ∼ 1 

•	 if deflected upwards by the impactor, the bell with also close due to σ 
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13.6 Swirling Water Bell 

Consider the water bell formed with a swirling jet (Bark et al. 1979 ).
 
Observation: Swirling bells don’t close. Why not?
 
Conservation of angular momentum: as r decreases, v increases as does FC ∼ v2/r.
 
Sheet velocity:
 

v = uês + vêθ (13.18) 
'-v" '-v" 

in plane swirl 

Continuity: Q = 2πrhu (13.19) 

Conservation of Angular Momentum: vr = v0r0 (13.20) 

2 2 2Energy conservation: u + v = 2gz + u + v0z (13.21) 
0 

2σ 2σ cosφ ρhu2 ρhv2 cosφ 
Normal force balance: + + ρgh sinφ = ΔP + + (13.22) 

R r R r 

Evidently, the bell fails to close owing to the influence of the centripetal forces induced by the swirl. 

Figure 13.6: Swirling water bells extruded from a rotating nozzle. 
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