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12. Instability Dynamics
 

We proceed by considering the surface tension-induced 
instability of a fluid coating on a cylindrical fiber. 
Define mean thickness 

 λ1 
h∗ = h(x)dx (12.1) 

λ 0 

Local interfacial thickness 

Capillary Instability of a Fluid Coating on a Fiber 

h(x) = h∗ + ǫ cos kx (12.2) 
Figure 12.1: Instability of a fluid coating on 

Volume conservation requires: a cylindrical fiber. 

   λ λ λ 

π(r + h)2dx = π(r + h0)
2dx ⇒ (r + h∗ + ǫ cos kx)2dx = (r + h0)

2λ ⇒ 
0 0 0 

ǫ2 1 ǫ2 

(r + h∗)2λ+ ǫ2 λ = (r + h0)
2λ ⇒ (r + h∗)2 = (r + h0)

2 − = (r + h0)
2 1− 

2 2 2 (r + h0)2 

which implies 
1 ǫ2 

h∗ = h0 − (12.3) 
4 r + h0 

Note: 
h∗ < h0 which suggests instability. 

f λ
So, when does perturbation reduce surface energy? i.e. when is 2π(r + h)ds < 2π(r + h0)λ?0 

J

( ) [ ]1/2dh 1
Note: ds2 = dh2 + dx2 ⇒ ds = dx 1 + dx 2≈ dx 1 + ǫ2k2 sin2 kx

f λ f λ 1 1 (r + h∗)ǫ2k2λ.(r + h)ds = (r + h∗ + ǫ cos kx)(1 + ǫ2k2 sin2 kx)1/2dx = (r + h∗)λ+
0 0 2 4 

1 (r + h∗)ǫ2k2λ < (r + h0)λ.So the inequality holds provided (r + h∗)λ+ 4 
Substitute for h∗ from (12.3): 

1 ǫ2 1
(r + h∗)ǫ2k2− + < 0 (12.4) 

4 r + h0 4

We note that the result is independent of ǫ: 

k2 < (r + h0)
−1(r + h∗)−1 ≈ 

1 
(12.5) 

(r + h0)2 

i.e. unstable wavelengths are prescribed by 

2π 
λ = > 2π(r + h0) (12.6) 

k 

as in standard inviscid Ra-P. All long wavelength disturbances will grow. Which grows the fastest? That 
is determined by the dynamics (not just geometry). We proceed by considering the dynamics in the thin 
film limit, h0 ≪ r, for which we obtain the lubrication limit. 
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12.2 Dynamics of Instability (Rayleigh 1879)

Physical picture: Curvature pressure induced by perturbation drives Couette flow that is resisted by
viscosity

d2v dp
η − = 0 (12.7)
dy dx

where dp is the gradient in curvature pressure, which is independent of y ( a generic feature of lubricationdx
problems), so we can integrate the above equation to obtain

1 dp
v(y) =

(

y2 − hy

)

(12.8)
µ dx 2

Flux per unit length:

Q =

∫ h 1 dp
v(y)dy =

0

− h3 (12.9)
3µ dx

Conservation of volume in lubrication problems requires that Q(x+ dx)−Q(x) = −∂hdx∂t ⇒

dQ h3 d2
=

dx
− 0 p ∂h

=
3µ dx2

− (12.10)
∂t

Curvature pressure

p(x) = σ

(

1 1
+ σ

R R2

)

=
1

(

1

r + h
− hxx

)

(12.11)

Substitute (12.11) into (12.10):

∂h σh3

= 0 ∂2 1

∂t 3 ∂x2

[

σhxx (12.12)
µ r + h(x)

−
]

Now h(x, t) = h∗ + ǫ(t) cos kx ⇒ hx = −ǫk sin kx, hxx = −ǫ2k cos kx, ht =
dǫ cos kxdt

So cos kxdǫ σh3 2

= 0
σh3 2

ǫ cos kx k k4 dǫ = βǫ where β = 0 k k4dt 3µ

[

(r+h)2 − ⇒ dt 3µ (r+h0)2
−

Fastest growing mode when dβ

]

8

[ ]

= 0 = 2k
dk (r+h0)2

− 4k∗3 so

λ∗ = 2
√
2π (r + h0) (12.13)

is the most unstable wavelength for the viscous mode.

Note:

• Recall that for classic Ra-P on a cylindrical fluid thread
λ∗ ∼ 9R.

12µ(r+h )4• We see here the timescale of instability: τ∗ = 0

3 .
σh

0

• Scaling Argument for Pinch-off time.

When h≪ r, ∇ h3

p ∼ σh0 1 ∼ µ v
2 2 ⇒ v ∼ r 0 σh0

r r h
0

τ ∼ µ r3 ⇒

µr4
τpinch ∼ (12.14)

σh3
0 Figure 12.2: Growth rate β as a func-

tion of wavenumber k for the system de-
picted in Fig. 12.1.
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12.3 Rupture of a Soap Film (Culick
1960, Taylor 1960)

We assume O = µνh ≪ 1, so that viscous effects are negligible.σR
The driving curvature force is thus resisted principally by fluid
inertia. Assume dynamics is largely 2D (true for a planar film,
or for bubble burst for r(t)≫ h).
Retraction of a Planar Sheet

Note: Force/ length acting on the rim may be calculated exactly
via Frenet-Serret

FC =

∫

σ (∇ · n)ndl (12.15) Figure 12.3: Rupture of a soap film of
C

thickness h.

where (∇ · n)n = dt
dl

∫

dt⇒ FC = σ dl = σ (t1
C dl

− t2) = 2σx̂ (12.16)

At time t = 0, planar sheet of thickness h punctured at x = 0, and retracts in x̂ direction owing to F c.
Observation: The rim engulfs the film, and there is no upstream disturbance.

Figure 12.4: Surface-tension-induced retraction of a planar sheet of uniform thickness h released at time
t = 0.

Rim mass: m(x) = ρhx and speed v = dx .dt
Since the inertial force on the rim is equal to the rate of change of rim momentum

d d 2 dm dv 1 2 dm 1 d
FI = (mv) = v mv = v +mv = v + (mv2) . (12.17)

dt dx dx Dx 2 dx 2 dx

The force balance us between the curvature force and the inertial force

d 1 1
2σ = ( mv2) + ρhv2 (12.18)

dx 2 2

Integrate from 0 to x:
1

2σx = ρhxv2
1

+ ρh
2 2

∫ x

v2dx (12.19)
0

The first term is the surface energy released per unit length, the 2nd term the K.E. of the rim, and the
3rd term the energy required to accelerate the rim. Now we assume v is independent of x (as observed in

x
experiments), thus

∫

v2dx = xv2 and the force balance becomes 2σx = ρhxv2
0

⇒

( )1/2
2σ

v = is the retraction speed (Taylor-Culick speed) (12.20)
ρh

E.g. for water-soap film, h ∼ 150µm ⇒ v ∼ 102cm/s.
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J 
hx 

Note: Surface area of rim/ length: p = 2πR where m = ρhx = πρR2 ⇒ R = where R is the rim π 
J √ 

hx radius. Therefore the rim surface energy is σP = σ2π = 2σ hxπ. Total surface energy of the system π 
[ ]

is σ 2x + 2(πhx)1/2 . 
)1/2SArim ∼ 2

√
hxπ 

( 
hπ Scale:	 ∼ ≪ 1 for x ≫ h.SAsheet 2x x 

The rim surface area is thus safely neglected once the sheet has retracted a distance comparable to its
 
thickness.
 
Some final comments on soap film rupture.
 

1. for dependence on geometry and influence of µ, see
 
Savva & Bush (JFM 2009).
 

√ 
2. form of sheet depends on Oh = µ .√

2hρσ 

3. The growing rim at low Oh is subject to Ra-Plateau 
⇒ scalloping of the retracting rim ⇒ rim pinches off
 
into drops
 

4. At very high speed, air-induced shear	 stress leads
 
to flapping. The sheet thus behaves like a flapping
 
flag, but with Marangoni elasticity.
 Figure 12.5: The different shapes of a retract

ing sheet and rim depend on the value of Oh. 

Figure 12.6: The typical evolution of a retracting sheet. As the rim retracts and engulfs fluid, it eventually 
becomes Rayleigh-Plateau unstable. Thus, it develops variations in radius along its length, and the 
retreating rim becomes scalloped. Filaments are eventually left by the retracting rim, and pinch off 
through a Rayleigh-Plateau instability, the result being droplets. 
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