
Social Coding: A Case Study with Julia 

18.337/6.338 Parallel Computing
 
Department of Mathematics
 

Department of Electrical Engineering and Computer Science
 
Massachusetts Institute of Technology
 

December 18, 2011
 

1 Introduction 

For a new programming language to success, it must pursue two goals. The first goal is a quick 
access to the language. The second goal is an easy reaching to other users and experts. Many 
new programing languages such as python and ruby address the first well by providing an online 
interactive prompt [4, 5]. However, they have yet addressed the second goal well enough. This 
project tries a new approach to address the second. It explores a new way to make it easy for 
user to reach to other users and experts. Specifically, this project experiments a way to create 
such environment for Julia [6]. We begins with a solution, a design and an implementation, 
followed by installation and conclusion. 

2 A Solution 

For Julia to achieve the second goal: an easy reaching to other users and experts, users need 
to be able to chat, exchange conversations and share a Julia prompt session among each other 
and with experts. Furthermore, they need to be able to edit the same julia program along with 
experts. With these features, users will be able to easily reach to other users and experts. Users 
can ask other users questions; in real-time, other users or experts will be able to quickly answer 
them, help them with their julia programs or even show them how to do it. While adding all 
these features, we also have to address the first goal: a quick access to the language. 

To do all these, we augment the approach that has already been used by many languages 
(an online interactive prompt) with collaborative and social features. In fact, we augment Julia 
interactive prompt to allow multiple users to share a single Julia prompt session and allow them 
to chat among each other, may it be other users, friends or experts. Furthermore, we add a 
collaborative editor, allowing users to be able to edit the same Julia program. We believe that 
this solution addresses both goals well and it is a key toward the success of new programming 
languages such as Julia. 

1
 



Figure 1: An object model the basis of the application.
 

3 A Design 

To achieve both goals, we decide to create a real-time single-page web application [1]. The 
basis of the application is the object model depicted in Figure 1. Each user subscribes to (1) a 
channel identified with his or her own name and (2) the public channel. The design mockup of 
the application is shown in Figure 2. Three main features include chat with other users, shared 
julia prompt session and a collaborative editor. First, when a user clicked on a name on the 
right panel, a chat box will pop up and the user will be able to type and chat with the other 
user. A chat message will be published to the channel identified with the recipient’s name. 
Second, users can type in Julia command in the prompt. The command and its respond will 
be published to the public channel; thus, they will be received by all users. Third, when users 
clicked on the “Editor” button, they will switch from Prompt screen to Editor screen. In this 
screen, user will be able to collaboratively edit a Julia program. In addition, they can run this 
program in Prompt screen by clicking “Run Code” button. 

4 An Implementation 

In this section, we describe an implementation of the design. We use two main open-source 
projects: Socketstream [2] and Etherpad-lite [3]. We use Socketstream for chat and shared Julia 
prompt session; we use Etherpad-lite for collaborative editing. 

4.1 Chat and Shared Julia Prompt Session: Socketstream 

To implement chat and shared Julia prompt session, we use Socketstream framework. Socket-
stream provides the following features: 

2
 



Figure 2: A design mockup of the application. 

• NodeJS: a server-side javascript [?]. 

• Coffeescript support [12]. 

• Jade Template Engine support [13]. 

• Socket.IO support [14]. 

• ZeroMQ support [16]. 

• Redis support [15]. 

For more information about Socketstream, please visit: 
http://github.com/socketstream/socketstream. 

4.2 Collaborative Editing: Etherpad-lite 

Etherpad-lite is an online collaborative editing. We make use of Etherpad-lite by embedding it 
into our web application via iframe; we get contents of the editor using Etherpad-lite jQuery 
Plugin [11]. 

3
 

http://github.com/socketstream/socketstream
http:Socket.IO


Figure 3: An application architecture.
 

For more information about Etherpad-lite, please visit: 
https://github.com/Pita/etherpad-lite. 

4.3 Libraries 

Libraries used in this implementation are: 

• jQuery Plugin. http://jquery.com/. 

• jQuery UI. http://jqueryui.com/ 

• jQuery UI Chatbox. http://www.cs.illinois.edu/homes/wenpu1/chatbox.html. 

• jQuery Purr. http://code.google.com/p/jquery-purr/. 

• Etherpad-lite jQuery Plugin. https://github.com/johnyma22/etherpad-lite-jquery-plugin. 

• Mustache. http://mustache.github.com/. 

Putting Socketstream and Etherpad-lite together, we have an architecture for our application 
(Figure 3). This architecture allows running a Julia program in Editor screen in Prompt screen. 
When a user clicks “Run Code” button, Socketstream-frontend gets contents of the editor 
from Etherpad-lite (usually stored inside MysqlDB) and passes the contents to Socketstream­
backend. Socketstream-backend executes the contents in a JuliaSession and publishes to a 
public channel. 

Snapshots of the application are illustrated in Figure 5 and Figure 4. 

4
 

https://github.com/Pita/etherpad-lite
http://jquery.com/
http://jqueryui.com/
http://www.cs.illinois.edu/homes/wenpu1/chatbox.html
http://code.google.com/p/jquery-purr
https://github.com/johnyma22/etherpad-lite-jquery-plugin
http://mustache.github.com/


Figure 4: A snapshot of the application’s editor screen. 

5 Installation 

This section describes what you need to install this application. The application requires Redis, 
NodeJS, Etherpad-lite, Socketstream and Julia. 

5.1 Redis Installation 

Please follow the instruction at http://redis.io/download. 

5.2 NodeJS Installation 

Please follow the instruction at http://nodejs.org/. 

5.3 Etherpad-lite Installation 

Please follow the instruction at https://github.com/Pita/etherpad-lite. 

5.4 Socketstream Installation 

Please follow the instruction at http://github.com/socketstream/socketstream or execute: 

npm install -g socketstream 

5.5 Julia Installation 

Please follow the instruction at https://github.com/JuliaLang/julia 

5
 

http://redis.io/download
http://nodejs.org/
https://github.com/Pita/etherpad-lite
http://github.com/socketstream/socketstream
https://github.com/JuliaLang/julia


Figure 5: A snapshot of the application’s prompt screen. 

5.6 Application Installation 

First of all, please install git if you have yet had git. You can get git here: http://git-scm.com/. 
To install the application: 

git clone git://github.com/Wisdom/juliaSocial.git 
cd juliaSocial 
npm install node-uuid 

5.7 Application Configuration 

The configuration file is inside config/app.coffee. Please point “julia” to your julia binary and 
“etherpad” to your etherpad host. 

5.8 Running the application 

First, start redis server: 

redis-server 

Second, inside the juliaSocial folder run: 

socketstream start 

6
 

http://git-scm.com/


6 Conclusion 

In this project, we provide a solution, a design and an implementation to the two goals needed 
for the success of a new programming language. Further development of this project will 
continue at http://github.com/Wisdom/juliaSocial. Future work includes Julia syntax parser, 
multiple sessions and rooms, multiple programming languages, Facebook and Twitter integra­
tion and Julia syntax highlighter. We hope that this project will accelerate the adoption of 
Julia; we also hope that it will be useful to other programming languages as well. 

Finally, I would like to thank Professor Alan Edelman, Jeff Bezanson, Stephan Boyer, de­
velopers of all the projects and libraries used in this project, Julia developers and the class. 

References 

[1] Single Page Application. http://en.wikipedia.org/wiki/Single-page application. 

[2] Socketstream. http://github.com/socketstream/socketstream. 

[3] Etherpad-lite. https://github.com/Pita/etherpad-lite. 

[4] Try Python. http://trypython.org/. 

[5] Try Ruby. http://tryruby.org/. 

[6] Julia. https://github.com/JuliaLang/julia. 

[7] jQuery Console. https://github.com/replit/jq-console. 

[8] jQuery UI. http://jqueryui.com/. 

[9] jQuery UI Chatbox. https://github.com/dexterpu/jquery.ui.chatbox. 

[10] jQuery Purr. http://code.google.com/p/jquery-purr/. 

[11] Etherpad-lite jQuery Plugin. https://github.com/johnyma22/etherpad-lite-jquery-plugin. 

[12] NodeJS. http://nodejs.org/. 

[13] Coffeescript. http://coffeescript.org/. 

[14] Jade. http://jade-lang.com/. 

[15] Socket.IO. http://socket.io/. 

[16] Redis. http://redis.io/. 

[17] ZeroMQ. http://www.zeromq.org/. 

7
 

http://en.wikipedia.org/wiki/Single-page
http://github.com/socketstream/socketstream
https://github.com/Pita/etherpad-lite
http://trypython.org/
http://tryruby.org/
https://github.com/JuliaLang/julia
https://github.com/replit/jq-console
http://jqueryui.com/
https://github.com/dexterpu/jquery.ui.chatbox
http://code.google.com/p/jquery-purr
https://github.com/johnyma22/etherpad-lite-jquery-plugin
http://nodejs.org/
http://coffeescript.org/
http://jade-lang.com/
http://socket.io/
http://redis.io/
http://www.zeromq.org/
http:Socket.IO
http://github.com/Wisdom/juliaSocial


MIT OpenCourseWare
http://ocw.mit.edu

18.337J / 6.338J Parallel Computing
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

