18.336 Numerical Methods of Applied Mathematics -- II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT Dept. of Mathematics Benjamin Seibold

18.336 spring 2009 Problem Set 3

Out Thu 03/12/09

Due Thu 04/02/09

Problem 6

Consider the 1d Poisson equation

$$\begin{cases} -u_{xx} = f & \text{in }]0,1[\\ u = 0 & \text{on } \{0,1\} \end{cases}$$
(1)

with $f(x) = \sin(\phi(x))(\phi_x(x))^2 - \cos(\phi(x))\phi_{xx}(x)$, where $\phi(x) = 9\pi x^2$. Consider a 3point finite difference approximation on regular grids (grid spacing h) to approximate (1) by linear systems $A_h \cdot u_h = f_h$. Implement a V-cycle multigrid scheme (ν presmoothing and ν postsmoothing steps), which solves systems smaller than 100×100 exactly. Solve the linear system corresponding to $h = 2^{-15}$ by multigrid. For $\nu \in 1, 2, 3$, show the error in the various levels in the V-cycle. How does the final (multigrid) error compare to the approximation error of the finite difference scheme?

Problem 7

On the domain $\Omega =]0, 1[^2 \setminus [\frac{1}{4}, \frac{1}{2}]^2$, with the boundaries $\Gamma_D = (\{0, 1\} \times [0, 1]) \cup ([0, 1] \times \{0, 1\})$, and $\Gamma_N = (\{\frac{1}{4}, \frac{1}{2}\} \times [\frac{1}{4}, \frac{1}{2}]) \cup ([\frac{1}{4}, \frac{1}{2}] \times \{\frac{1}{4}, \frac{1}{2}\})$, consider the Poisson problem

$$\begin{cases}
-\nabla^2 u = 1 & \text{in } \Omega \\
u = f & \text{on } \Gamma_D \\
\frac{\partial u}{\partial n} = \frac{\partial f}{\partial n} & \text{on } \Gamma_N
\end{cases}$$
(2)

with $f(x, y) = x^3y - xy^3 - \frac{1}{2}x^2$.

- 1. Write a finite difference code that approximates (2) for various grid resolutions $h = \Delta x = \Delta y$.
- 2. Implement a good multigrid solver that solves the arising linear systems. You can restrict to mesh sizes that are powers to 2, for which the domain boundaries fall onto grid edges.
- 3. Compare the run times (tic, toc) of your multigrid solver with the run times using the Matlab backslash operator and with conjugate gradients for a comparable accuracy.