
18.335 Problem Set 1 Solutions

Problem 1: Gaussian elimination

The inner loop of LU, the loop over rows, subtracts from each row a different multiple of the pivot
row. But this is exactly a rank-1 update U → U − xyT , where x is the column-vector of multipliers
and yT is the pivot row. More explicitly, we can rewrite Gaussian elimination without row swaps
(pivoting) as:

U = A
for k = 1 to m − 1

x = uk+1:m,k/ukk

Uk+1:m,k:m = Uk+1:m,k:m − xuk,k:m

Note that I have used Matlab notation n : n� to denote ranges (from n to n�) of rows or columns.
In particular, note that we only have to do a rank-1 update of a submatrix of U , and that uk,k:m

is a row vector of the k-th row of U from column k to column m.

Problem 2: Asymptotic notation

(a) Θ means both O and Ω. Let’s do one at a time. By the definition of O, f(n) ≤ C1F (n)
for n > N1 and g(n) ≤ C2G(n) for n > N2 (no absolute values since the functions were
given to be nonnegative), for some constants C1,2 and N1,2. If we let C = max(C1, C2) and
N = max(N1, N2), then f(n) + g(n) ≤ C1F (n) + C2G(n) ≤ C[F (n) + G(n)] for n > N ,
hence f + g is O(F + G). Similarly for Ω, replacing ≤ with ≥ and max with min, so f + g is
Ω(F + G). Hence f + g is Θ(F + G).

(b) f(n) ∈ O[g(n)] ⇔ |f(n)| ≤ C|g(n)| for some C > 0 and n > N ⇔ |g(n)| ≥ C−1|f(n)| for
C−1 > 0 and n > N ⇔ g(n) ∈ Ω[g(n)]. Q.E.D.

(c) f(n) ∈ O[F (n)] f(n) F (n)| for n > N . If h(n) ∈ O[f(n) + c F (n)] then for
n > N � we have

⇔
|h(
|
n)| ≤

| ≤
C �|

C
f(
|
n) + c F (n)| ≤ C �|f(n)| + C �|c| |F (n)| for some C � > 0.

For n > max(N �, N), |h(n)| ≤ (C �C + C �|c|) |F (n)| where C �C + C �|c| > 0, and thus h(n) ∈
O[F (n)]. However, the same inference is not true if we replace O with Θ; as a simple example,
consider f(n) = n3 and F (n) = n3 2 with c = −1: in this case n3 3 2), but − n

3 3).
∈ O(n − n

f(n) + c F (n) = n2 and Θ(n2) is not a subset of Θ(n − n2) = Θ(n

(d) If the running time is O(n2), that means that the time is ≤ n2 multiplied by a constant,
asymptotically. If it is “O(n2) or worse”, that would mean that the time is bounded above by
any function ≥ n2, which is true of every function! Usually, when you hear things like this,
what people really mean is “Θ(n2) or worse,” or equivalently “Ω(n2)”.

Problem 3: Caches and matrix multiplications

(a) See figure 1. For discussion of the results, see part (d).

(b) The only temporal locality in a matrix-vector multiply y = Ax is that the vector x is re-used
to multiply against each row of A; nothing in A is re-used, as each element of A is needed
exactly once. Thus, there will always be m2 misses to read in A. Furthermore, x is read
in m times, but asymptotically (for large m > Z) x will not fit in cache and hence (in the
straightforward row-column algorithm) every read of x will incur m cache misses (by the time
you get back to the first element of x, it has left the cache), for m2 misses in total. Or,
technically, with an ideal cache it would store Z − 1 of the elements in cache and read in the
remaining elements one by one, for m+(m−1)(m−Z +1) misses, but for large m only the m2

1

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

matrix size m

gf
lo

ps
 (

2m
2 /

tim
e

in
 n

s)

ordinary matrix multiply A*B

by−column matrix multiplication

Figure 1: Matrix-multiply benchmarks in Matlab 7.6.0.324 (R2008a) on a 2.66GHz Intel Core 2
duo. I attempted to use only one CPU by setting maxNumCompThreads(1), but top showed that it
was still using 2 CPUs for some reason.

leading term matters. Thus, there are 2m2 misses asymptotically, independent of Z. (Note
that, like our analyses in cache, I’m not including cache-line effects. If you include cache lines
of length L then you get 2m2/L misses if A is row-major, or m2 + m2/L if A is column-major
since it is being read in the “wrong” order.)

(c) Since x is re-used, we should read x in blocks of size αZ for some fraction α to be determined.
Then, for each block, we will multiply it by the corresponding block of αZ columns of A
before moving on to the next block of x.

let y = A:,1:αZ x1:αZ (first block)

let y = y + A:,(αZ+1):2αZ x(αZ+1):2αZ (next block)

et cetera, for m/(αZ) blocks

Now, what should α be? Since we can’t get any re-use for A, then we should read A only one
element at a time and then discard it; this means we only need to reserve one cache entry
for A. Unfortunately, we have now introduced a new set of reads: y has to be read in each
time in order to add it to the next block. In the above algorithm, once m > Z we can’t really
get cache reuse, like in part (b), and incur (m − 1)m ≈ m2/αZ misses. So, in that case αZ
we might as well reserve only one cache entry for reading in y (i.e. reading it one entry at a
time and then discarding form the cache). So αZ = Z − 2. By construction, x is read into
cache only once, for m cache misses (asymptotically negligible compared to m2). Thus, the
total number of cache misses is m2 + m2/(Z − 2) ≈ m2(1 + 1/Z) ≈ m2. For large Z, this is
a savings of about a factor of 2 over the naive algorithm—nothing to sneeze at, but nothing
like the factor of

√
Z we can save for a matrix-matrix multiply!

You might wonder whether we can gain some additional savings by blocking y as well. That

2

� � � �

is, by doing the above algorithm in blocks of ≈ Z/2 in y and blocks of ≈ Z/2 in x. However,
in this case we would have to read in x multiple times, and the number of cache misses would
end up being m2(1+2/Z), slightly worse (essentially because we are only using half the cache
for x). There are other ways to re-arrange the algorithm as well, but none of them do better
than m2(1 + 1/Z) as far as I can tell. In any case, for large m and Z we are dominated by
the m2 misses to read in A, and there’s nothing that can be done about this.

(d) Yes. In the by-column matrix multiplication, we can see a huge drop in performance once the
matrix size goes out of the L2 cache, whereas there is no such drop for the ordinary matrix
multiplication because the 1/

√
Z factor makes the cache-miss cost negligible.

It ultimately achieves roughly the peak flop rate, as in class; note that if you have multi
ple CPUs, it may be impossible to prevent Matlab from using at least 2 processors. Even
calling maxNumCompThreads(1) as documented in the Matlab manual, it still used two pro
cessors for me in Matlab 7.6! Grrr. Hence, I got a peak flop rate of almost 10 gflops on the
2.6GHz Intel Core 2 (two processors, ~5 gflops peak for each using SSE2 instructions).

Note that, for small matrix sizes, the performance is a lot lower in both cases, but espe
cially in the by-column multiply. This is simply the overhead of the Matlab interpreter,
which is much larger for the by-column case because that has a Matlab loop (versus a single
Matlab call for the ordinary matrix-multiply). In both cases, the interpreter overhead (which
is O(m) in the by-column case) becomes negligible for large m, however.

(I’m not sure what the temporary drop in the ordinary matrix-multiply case is around
m = 100.)

Problem 4: Caches and backsubstitution

(a) For each column we get a cache miss for each entry rij of the matrix R, an there are roughly
m2/2 of these. For large enough m, where m2 > Z, these are no-longer in-cache and incur new
misses on each column. Hence there are roughly m2n/2, or Θ(m2n) misses. (No asymptotic
benefit from the cache.)

(b) We can solve this problem in a cache-oblivious or cache-aware fashion. I find the cache-
oblivious algorithm to be more beautiful, so let’s do that. We’ll divide R, X, and B into
m m
2 × 2 blocks for sufficiently large m:1 � � � � � �

R11 R12 X11 X12 B11 B12

0 R22 X21 X22
=

B21 B22
,

where R11 and R22 are upper-triangular. Now we solve this, analogous to backsubstitution,
from bottom to top. First, for k = 1, 2, we solve

R22X2k = B2k

recursively for X2k. Then, for k = 1, 2 we solve

R11X1k = B1k − R12X2k

recursively for X1k. We use a cache-optimal algorithm (from class) for the dense matrix
mmultiplies R12X2k, which requires f(m) ∈ Θ(m3/

√
Z) misses for each m multiply. The 2 × 2 � � � � � � � � � � � �

1If m is not even, then we round as needed: R11 is mm
2 ×

2 , R12 is mm
2 ×

2 , R21 is mm
2 ×

2 , and

R22is mm
2 ×

2 ; similarly for X and B.

3

� �

� �

number Q(m) of cache misses then satisfies the recurrence:

Q(m) = 4Q(m/2) + 2f(m) + 4m 2 ,

where the 4Q(m/2) is for the four recursive backsubsitutions and the 4m2 is for the two matrix
subtractions B1k − R12X2k. This recurrence terminates when the problem fits in cache, i.e.
when 2m2 + m2/2 ≤ Z, at which point only ∼ 3m2/2 misses are required. (Since we are only
interested in the asymptotic Θ results, these little factors of 3 and 4 don’t matter much, and
I’ll be dropping them soon.) Noting that f(m/2) ≈ f(m)/8 , we can solve this recurrence as
in class by just plugging it in a few times and seeing the pattern:

Q(m) ≈ 4[4Q(m/4) + 2f(m)/�
8 + 4m �

2/4] + 2f(m) + 4m 2

1
= 42Q(m/4) + 2f(m) 1 + + 4m 2 [1 + 1]

2

1 1 ≈ 43Q(m/8) + 2f(m) 1 +
2

+
22

+ 4m 2 [1 + 1 + 1]

≈ · · · �
1 1

�

≈ 4kΘ[(m/2k)2] + 2f(m) 1 +
2

+ · · · +
2k−1

+ 4m 2 [k]

Θ(m 2) + Θ(m 3/
√

Z) + Θ(m 2)k≈

where 1 + 1 + + 1 ≤ 2 and k is the number of times we have to divide the problem to 2 2k−1· · ·
fit in cache, i.e. 3(m/2k)2/2 ≈ Z so k is Θ[log(m2/Z)]. Hence, for large m where the m3term
dominates over the m2 and m2 log m terms, we obtain

Q(m; Z) ∈ Θ(m 3/
√

Z)

and hence we can, indeed, achieve the same asymptotic cache complexity as for matrix mul
tiplication.

We could also get the same cache complexity in a cache-aware fashion by blocking the problem
into m/b blocks of size b×b, where b is some size in Θ(

√
Z) chosen so that pairwise operations

on the individual blocks fit in cache. Again, one would work on rows of blocks from bottom to
top, and the algorithm would look much like the ordinary backsubstitution algorithm except
that the numbers bij etcetera are replaced by blocks. This is a perfectly acceptable answer,
too.

4

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

