Chapter 7

7.1 Accuracy

Problem: Compute $f(x)$ given x. Result in floating point arithmetic $\tilde{f}(x)$.
Definition: An algorithm is accurate if

$$
\begin{equation*}
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=O\left(\epsilon_{\text {machine }}\right) \tag{7.1}
\end{equation*}
$$

Usually too much to ask if f is ill conditioned.

7.2 Stability

An algorithm \tilde{f} for a problem f is stable if for all x

$$
\begin{equation*}
\frac{\|\tilde{f}(x)-f(\tilde{x})\|}{\|f(\tilde{x})\|}=O\left(\epsilon_{\text {machine }}\right) \tag{7.2}
\end{equation*}
$$

For some \tilde{x} such that:

$$
\begin{equation*}
\frac{\| \tilde{x}-x) \|}{\|x\|}=O\left(\epsilon_{\text {machine }}\right) \tag{7.3}
\end{equation*}
$$

Stable algorithm gives almost the right answer to nearly the right question.

7.3 Backward Stability

Satisfied by most algorithms in this course.
Definition: f is backward stable if

$$
\begin{equation*}
\tilde{f}(x)=f(\tilde{x}), \quad \text { with } \quad \frac{\| \tilde{x}-x) \|}{\|x\|}=O\left(\epsilon_{\text {machine }}\right) \tag{7.4}
\end{equation*}
$$

A backward stable algorithm gives the right answer to nearly the right question.

7.4 Meaning of $O\left(\epsilon_{\text {machine }}\right)$

Converges to 0 linearly with $\epsilon_{\text {machine }}$ as $\epsilon_{\text {machine }} \rightarrow 0$.
In practice $O\left(\epsilon_{\text {machine }}\right)$ means $\leq C \cdot \epsilon_{\text {machine }}$, where C is a low order polynomial in the size of the problem. If solving $A x=b, \operatorname{size}(A)=[m, n]$.

Usually $O\left(\epsilon_{\text {machine }}\right)$ means $100 \epsilon, 1000 \epsilon$.

7.5 Stability of Floating Point

Consider the problem of computing $x^{T} y, x, y \in \mathbb{R}^{n}$

$$
\begin{equation*}
\alpha=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \tag{7.5}
\end{equation*}
$$

Start with $n=1$:

$$
\begin{align*}
\alpha & =x_{1} y_{1} \tag{7.6}\\
\tilde{\alpha} & =x_{1} y_{1}\left(1+\delta_{1}\right) \quad\left|\delta_{1}\right| \leq \epsilon_{\text {machine }} \\
& =x_{1}\left(1+\delta_{1}\right) y_{1} \tag{7.7}
\end{align*}
$$

$\tilde{\alpha}$ is the exact answer for slightly perturbed data $x_{1}\left(1+\delta_{1}\right)$ and y_{1}.
$n=2$:

$$
\begin{align*}
f l\left(\sum x_{i} y_{j}\right) & =\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\mu_{1}\right) \quad|\delta, \mu| \leq \epsilon_{\text {machine }} \\
& =x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\mu_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\mu_{1}\right) \\
& =\underbrace{x_{1}\left(1+\delta_{1}\right)\left(1+\mu_{1}\right)}_{\tilde{x}_{1}} y_{1}+\underbrace{x_{2}\left(1+\delta_{2}\right)\left(1+\mu_{1}\right)}_{\tilde{x}_{2}} y_{2} \\
& =\tilde{x}_{1} y_{1}+\tilde{x}_{2} y_{2} \\
& =\tilde{x}^{T} y \tag{7.8}
\end{align*}
$$

where,

$$
\begin{align*}
\tilde{x} & =\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \\
& =\left(x_{1}\left(1+\delta_{1}\right)\left(1+\mu_{2}\right), x_{2}\left(1+\delta_{2}\right)\left(1+\mu_{2}\right)\right) \tag{7.9}\\
\frac{\|\tilde{x}-x\|}{\|x\|} & \leq 2 \epsilon+O\left(\epsilon^{2}\right) \tag{7.10}
\end{align*}
$$

General case: Define

$$
\begin{align*}
& \tilde{x}_{i}=\left(1+\delta_{i}\right)\left(1+\mu_{i-1}\right)\left(1+\mu_{i}\right) \cdots\left(1+\mu_{n-1}\right) \tag{7.11}\\
& \tilde{y}_{i}=y \tag{7.12}\\
& f l\left(x^{T} y\right)= f l\left(\sum_{i=1}^{n} x_{i} y_{y}\right) \\
&=\left(\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\mu_{1}\right)+x_{3} y_{3}\left(1+\delta_{3}\right)\right)\left(1+\mu_{2}\right)+\cdots \\
&= x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\mu_{1}\right)\left(1+\mu_{2}\right) \cdots\left(1+\mu_{n-1}\right)+ \\
& x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\mu_{1}\right)\left(1+\mu_{2}\right) \cdots\left(1+\mu_{n-1}\right)+ \\
& x_{3} y_{3}\left(1+\delta_{3}\right)\left(1+\mu_{2}\right)\left(1+\mu_{3}\right) \cdots\left(1+\mu_{n-1}\right)+ \\
& \cdots+ \\
& x_{n} y_{n}\left(1+\delta_{n}\right)\left(1+\mu_{n-1}\right) \tag{7.13}\\
&= \tilde{x}^{T} y \tag{7.14}
\end{align*}
$$

where,

$$
\begin{equation*}
\frac{\|\tilde{x}-x\|}{\|x\|} \leq n \epsilon \tag{7.15}
\end{equation*}
$$

Example: Not backward stable, the outer product

$$
\begin{equation*}
f l\left(x y^{T}\right)=\left[x_{i} y_{j}\left(1+\delta_{i j}\right)\right] \tag{7.16}
\end{equation*}
$$

n^{2} errors, $2 n$ parameters. $f l\left(x y^{T}\right)$ is unlikely to be rank 1.

